精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的前n项和为Sn=2an-1,则满足$\frac{{a}_{n}}{n}≤2$的最大正整数n的值为(  )
A.2B.3C.4D.5

分析 Sn=2an-1,n=1时,a1=2a1-1,解得a1.n≥2时,an=Sn-Sn-1,化为:an=2an-1,利用等比数列的通项公式可得:an=2n-1.$\frac{{a}_{n}}{n}≤2$化为:2n-1≤2n,即2n≤4n.验证n=1,2,3,4时都成立.n≥5时,2n=(1+1)n,利用二项式定理展开即可得出.2n>4n.

解答 解:Sn=2an-1,n=1时,a1=2a1-1,解得a1=1.
n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1),化为:an=2an-1
∴数列{an}是等比数列,公比为2.
an=2n-1
$\frac{{a}_{n}}{n}≤2$化为:2n-1≤2n,即2n≤4n.
n=1,2,3,4时都成立.
n≥5时,2n=(1+1)n=$1+{∁}_{n}^{1}$+${∁}_{n}^{2}$+…+${∁}_{n}^{n-2}$+${∁}_{n}^{n-1}$+${∁}_{n}^{n}$≥2($1+{∁}_{n}^{1}$+${∁}_{n}^{2}$)=n2+n+2,
下面证明:n2+n+2>4n,
作差:n2+n+2-4n=n2-3n+2=(n-1)(n-2)>0,
∴n2+n+2>4n,
则满足$\frac{{a}_{n}}{n}≤2$的最大正整数n的值为4.
故答案为:C.

点评 本题考查了数列递推关系、等比数列的通项公式、二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知$f(x)=\frac{1}{3}{x^3}-4x+4$,
(1)求函数f(x)的单调增区间;
(2)求函数f(x)在x∈[0,4]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,$\overrightarrow a$与$\overrightarrow b$不共线,则∠AOB平分线上的向量$\overrightarrow{OM}$为(  )
A.$\frac{\overrightarrow a}{{|{\overrightarrow a}|}}+\frac{\overrightarrow b}{{|{\overrightarrow b}|}}$B.$\frac{\overrightarrow a+\overrightarrow b}{{|{\overrightarrow a+\overrightarrow b}|}}$
C.$\frac{{|{\overrightarrow b}|\overrightarrow a-|{\overrightarrow a}|\overrightarrow b}}{{|{\overrightarrow a}|+|{\overrightarrow b}|}}$D.$λ(\frac{\overrightarrow a}{{|{\overrightarrow a}|}}+\frac{\overrightarrow b}{{|{\overrightarrow b}|}})$,λ由$\overrightarrow{OM}$确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2x+$\frac{1}{{2}^{x+2}}$,则f(x)取最小值时对应的x的值为(  )
A.-1B.-$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1,BD的中点.
(1)求证:EF∥平面ABC1D1
(2)AA1=2$\sqrt{2}$,求异面直线EF与BC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若cos($\frac{π}{8}$-α)=$\frac{1}{5}$,则cos($\frac{3π}{4}$+2α)的值为(  )
A.$\frac{23}{25}$B.-$\frac{23}{25}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=2sin(πx)的图象向左平移φ(0<φ<4)个单位,得到函数y=g(x)的图象,若实数x1,x2满足|f(x1)-g(x2)|=4,且|x1-x2|min=2,则φ=(  )
A.1B.2C.3D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点P到圆(x+2)2+y2=1的切线长与到y轴的距离之比为t(t>0,t≠1);
(1)求动点P的轨迹C的方程;
(2)当$t=\sqrt{3}$时,将轨迹C的图形沿着x轴向左移动1个单位,得到曲线G,过曲线G上一点Q作两条渐近线的垂线,垂足分别是P1和P2,求$\overrightarrow{Q{P_1}}•\overrightarrow{Q{P_2}}$的值;
(3)设曲线C的两焦点为F1,F2,求t的取值范围,使得曲线C上不存在点Q,使∠F1QF2=θ(0<θ<π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足an+1=an-an-1(n≥2,且n∈N),a1=a,a2=b,记Sn=a1+a2+…+an,则下列选项中正确的是(  )
A.a100=-a,S100=2b-aB.a100=-b,S100=2b-a
C.a100=-b,S100=b-aD.a100=-a,S100=b-a

查看答案和解析>>

同步练习册答案