精英家教网 > 高中数学 > 题目详情
2.若cos($\frac{π}{8}$-α)=$\frac{1}{5}$,则cos($\frac{3π}{4}$+2α)的值为(  )
A.$\frac{23}{25}$B.-$\frac{23}{25}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

分析 运用诱导公式得出cos($\frac{π}{8}$-α)=$sin(\frac{3π}{8}+α)$,再利用二倍角公式求出cos($\frac{3π}{4}$+2α)的值即可.

解答 解:∵cos($\frac{π}{8}$-α)=$sin[\frac{π}{2}-(\frac{π}{8}-α)]=sin(\frac{3π}{8}+α)=\frac{1}{5}$,
∴cos($\frac{3π}{4}$+2α)=$1-2si{n}^{2}(\frac{3π}{8}+α)=1-2×(\frac{1}{5})^{2}=\frac{23}{25}$.
故选:A.

点评 本题考查三角函数的化简求值,考查三角函数的诱导公式及运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设直线l:(a+1)x+y+2-a=0,(a∈R)
(1)求证:对任意实数a,该直线恒过一定点;
(2)当直线l与圆x2+y2=16相交截得的弦长最小时,求此时a的值及弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数h(x)=x2+2x+alnx(a∈R),f(x)=(x2-2x)lnx+ax2+2.
(1)讨论函数y=h(x)的单调性;
(2)当a>0时,设函数g(x)=f(x)-x-2且函数g(x)有且只有一个零点,若e-2<x<e,g(x)≤m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在棱长为4的正方体ABCD-A1B1C1D1中,E、F分别是AB、DD1的中点,点P是DD1上一点,且PB∥平面CEF,则四棱锥P-ABCD外接球的体积为$\frac{41\sqrt{41}}{6}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的前n项和为Sn=2an-1,则满足$\frac{{a}_{n}}{n}≤2$的最大正整数n的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆M与直线3x-4y=0及3x-4y+10=0都相切,圆心在直线y=-x-4上,则圆M的标准方程为(x+3)2+(y+1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在三棱柱ABC-A1B1C1中,已知侧按AA1⊥底面ABC,且四边形AA1B1B是边长为2的正方形,CA=CB,点M为棱AB的中点,点E,F分别在按AA1,A1B1
(Ⅰ)若点F为棱A1B1的中点,证明:平面ABC1⊥平面CMF
(Ⅱ)若AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,且CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于R上可导的函数f(x),若满足(x-1)•f′(x)≥0,则下列说法错误的是(  )
A.函数f(x)在(0,+∞)上是增函数B.f(x)在(-∞,0)上是减函数
C.当x=1时,f(x)取得极小值D.f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.我国从2016年1月1日起统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:
生二胎不生二胎合计
70后301545
80后451055
合计7525100
(1)以这100个人的样本数据估计该市的总体数据,且视频率为概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列,数学期望和方差;
(2)根据调查数据,是否有90%的把握认为“生二胎与年龄有关”,并说明理由.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.0100.005
k02.0722.7063.8415.0246.6357.879

查看答案和解析>>

同步练习册答案