13£®ÎÒ¹ú´Ó2016Äê1ÔÂ1ÈÕÆðÍ³Ò»ÊµÊ©È«ÃæÁ½º¢Õþ²ß£®ÎªÁ˽âÊÊÁäÃñÖÚ¶Ô·Å¿ªÉúÓý¶þÌ¥Õþ²ßµÄ̬¶È£¬Ä³ÊÐѡȡ70ºóºÍ80ºó×÷Ϊµ÷²é¶ÔÏó£¬Ëæ»úµ÷²éÁË100룬µÃµ½Êý¾ÝÈç±í£º
Éú¶þÌ¥²»Éú¶þÌ¥ºÏ¼Æ
70ºó301545
80ºó451055
ºÏ¼Æ7525100
£¨1£©ÒÔÕâ100¸öÈ˵ÄÑù±¾Êý¾Ý¹À¼Æ¸ÃÊеÄ×ÜÌåÊý¾Ý£¬ÇÒÊÓÆµÂÊΪ¸ÅÂÊ£¬Èô´Ó¸ÃÊÐ70ºó¹«ÃñÖÐËæ»ú³éÈ¡3룬¼ÇÆäÖÐÉú¶þÌ¥µÄÈËÊýΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁУ¬ÊýѧÆÚÍûºÍ·½²î£»
£¨2£©¸ù¾Ýµ÷²éÊý¾Ý£¬ÊÇ·ñÓÐ90%µÄ°ÑÎÕÈÏΪ¡°Éú¶þÌ¥ÓëÄêÁäÓйء±£¬²¢ËµÃ÷ÀíÓÉ£®
²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk0£©0.150.100.050.0250.0100.005
k02.0722.7063.8415.0246.6357.879

·ÖÎö £¨1£©ÓÉÒÑÖªµÃ¸ÃÊÐ70ºó¡°Éú¶þÌ¥¡±µÄ¸ÅÂÊΪ$\frac{2}{3}$£¬ÇÒX¡«B£¨3£¬$\frac{2}{3}$£©£¬ÓÉ´ËÄÜÇó³öËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
£¨2£©Çó³öK2=3.030£¾2.706£¬´Ó¶øÓÐ90%ÒÔÉϵİÑÎÕÈÏΪ¡°Éú¶þÌ¥ÓëÄêÁäÓйء±£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªµÃ¸ÃÊÐ70ºó¡°Éú¶þÌ¥¡±µÄ¸ÅÂÊΪ $\frac{30}{45}$=$\frac{2}{3}$£¬ÇÒX¡«B£¨3£¬$\frac{2}{3}$£©£¬
P£¨X=0£©=${C}_{3}^{0}$£¨$\frac{1}{3}$£©3=$\frac{1}{27}$£¬
P£¨X=1£©=${C}_{3}^{1}$£¨$\frac{2}{3}$£©£¨$\frac{1}{3}$£©2=$\frac{2}{9}$£¬
P£¨X=2£©=${C}_{3}^{2}$£¨$\frac{2}{3}$£©2£¨$\frac{1}{3}$£©=$\frac{4}{9}$£¬
P£¨X=3£©=${C}_{3}^{3}$£¨$\frac{2}{3}$£©3=$\frac{8}{27}$£¬
Æä·Ö²¼ÁÐÈçÏ£º

X0123
P$\frac{1}{27}$$\frac{2}{9}$$\frac{4}{9}$$\frac{8}{27}$
¡àE£¨X£©=3¡Á$\frac{2}{3}$=2£»
£¨2£©¼ÙÉèÉú¶þÌ¥ÓëÄêÁäÎ޹أ¬
K2=$\frac{100£¨30¡Á10-45¡Á15£©^{2}}{75¡Á25¡Á45¡Á55}$=$\frac{100}{33}$¡Ö3.030£¾2.706£¬
ËùÒÔÓÐ90%ÒÔÉϵİÑÎÕÈÏΪ¡°Éú¶þÌ¥ÓëÄêÁäÓйء±£®

µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Óã¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¶þÏî·Ö²¼µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èôcos£¨$\frac{¦Ð}{8}$-¦Á£©=$\frac{1}{5}$£¬Ôòcos£¨$\frac{3¦Ð}{4}$+2¦Á£©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{23}{25}$B£®-$\frac{23}{25}$C£®$\frac{7}{8}$D£®-$\frac{7}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬a1=1£¬a2=2£¬a3=3£¬ÊýÁÐ{an+an+1+an+2}Êǹ«²îΪ2µÄµÈ²îÊýÁУ¬ÔòS24=£¨¡¡¡¡£©
A£®110B£®216C£®214D£®218

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªµÈ²îÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ·Ö±ðΪSn£¬Tn£¬ÇÒ$\frac{S_n}{T_n}=\frac{7n+2}{n+3}$£¬Ôò $\frac{a_4}{b_4}$=£¨¡¡¡¡£©
A£®$\frac{51}{10}$B£®$\frac{30}{7}$C£®$\frac{65}{12}$D£®$\frac{23}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÊýÁÐ{an}Âú×ãan+1=an-an-1£¨n¡Ý2£¬ÇÒn¡ÊN£©£¬a1=a£¬a2=b£¬¼ÇSn=a1+a2+¡­+an£¬ÔòÏÂÁÐÑ¡ÏîÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a100=-a£¬S100=2b-aB£®a100=-b£¬S100=2b-a
C£®a100=-b£¬S100=b-aD£®a100=-a£¬S100=b-a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚÊýÁÐ{an}ÖУ¬Èôan2-a2n+1=p£¨n¡Ý1£¬n¡ÊN*£¬pΪ³£Êý£©£¬Ôò³Æ{an}Ϊ¡°µÈ·½²îÊýÁС±£¬ÏÂÁÐÊǶԡ°µÈ·½²îÊýÁС±µÄÅжϣº
¢ÙÈô{an}Êǵȷ½²îÊýÁУ¬Ôò{an2}ÊǵȲîÊýÁУ»
¢Ú{£¨-1£©n}Êǵȷ½²îÊýÁУ»
¢ÛÈô{an}Êǵȷ½²îÊýÁУ¬Ôò{akn}£¨k¡ÊN*£¬kΪ³£Êý£©Ò²Êǵȷ½²îÊýÁУ®
ÆäÖÐÕæÃüÌâµÄÐòºÅΪ¢Ù¢Ú¢Û£¨½«ËùÓÐÕæÃüÌâµÄÐòºÅÌîÔÚºáÏßÉÏ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªA£¬B£¬C ÊÇÆ½ÃæÉϲ»¹²ÏßµÄÈýµã£¬OÊÇ¡÷ABCµÄÖØÐÄ£¬¶¯µãPÂú×ã$\overrightarrow{OP}$=$\frac{1}{3}$£¨$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$+2$\overrightarrow{OC}$£©£¬ÔòµãPÒ»¶¨ÎªÈý½ÇÐÎABCµÄ£¨¡¡¡¡£©
A£®AB±ßÖÐÏßµÄÖеãB£®AB±ßÖÐÏßµÄÈýµÈ·Öµã£¨·ÇÖØÐÄ£©
C£®ÖØÐÄD£®AB±ßµÄÖеã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔÚ¡÷ABCÖУ¬ÈôacosC+ccosA=bsinB£¬Ôò´ËÈý½ÇÐÎΪ£¨¡¡¡¡£©
A£®µÈ±ßÈý½ÇÐÎB£®µÈÑüÈý½ÇÐÎC£®Ö±½ÇÈý½ÇÐÎD£®µÈÑüÖ±½ÇÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¼¯ºÏ{¦Á|¦Á=$\frac{k¦Ð}{2}$-$\frac{¦Ð}{5}$£¬k¡ÊZ}¡É{¦Á|-¦Ð£¼¦Á£¼¦Ð}Ϊ£¨¡¡¡¡£©
A£®{-$\frac{¦Ð}{5}$£¬$\frac{3¦Ð}{10}$}B£®{-$\frac{7¦Ð}{10}$£¬$\frac{4¦Ð}{5}$}
C£®{-$\frac{¦Ð}{5}$£¬-$\frac{7¦Ð}{10}$£¬$\frac{3¦Ð}{10}$£¬$\frac{4¦Ð}{5}$}D£®{$\frac{3¦Ð}{10}$£¬-$\frac{7¦Ð}{10}$}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸