精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若acosC+ccosA=bsinB,则此三角形为(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

分析 由已知以及正弦定理可知sinAcosC+sinCcosA=sin2B,化简可得sinB=sin2B,结合B的范围可求B=$\frac{π}{2}$,从而得解.

解答 解:在△ABC中,由acosC+ccosA=bsinB以及正弦定理可知,
sinAcosC+sinCcosA=sin2B,
即sin(A+C)=sinB=sin2B.
∵0<B<π,sinB≠0,
∴sinB=1,B=$\frac{π}{2}$.
所以三角形为直角三角形.
故选:C.

点评 本题主要考查了正弦定理,两角和的正弦函数公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.对于R上可导的函数f(x),若满足(x-1)•f′(x)≥0,则下列说法错误的是(  )
A.函数f(x)在(0,+∞)上是增函数B.f(x)在(-∞,0)上是减函数
C.当x=1时,f(x)取得极小值D.f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.我国从2016年1月1日起统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:
生二胎不生二胎合计
70后301545
80后451055
合计7525100
(1)以这100个人的样本数据估计该市的总体数据,且视频率为概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列,数学期望和方差;
(2)根据调查数据,是否有90%的把握认为“生二胎与年龄有关”,并说明理由.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.0100.005
k02.0722.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x+sinπx-3,则$f({\frac{1}{2017}})+f({\frac{2}{2017}})+f({\frac{3}{2017}})+…+f({\frac{4033}{2017}})$的值为-8066.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩如表所示:
 序号 1 2 3 4 5 6 7 810 
 数学成绩 95 75 80 94 92 65 67 84 9871 
 物理成绩 90 63 72 87 91 71 58 82 92 81
若单科成绩85以上(含85分),则该科成绩优秀.
 序号 11 12 13 14 15 16 17 18 1920 
 数学成绩 67 93 64 78 77 90 57 83 72 83
 物理成绩 77 82 48 85 69 91 61 8478  86
(1)根据上表完成下面的2×2的列联表(单位:人)
  数学成绩优秀 
数学成绩不优秀
 合计
 物理成绩优秀27
 物理成绩不优秀112 13
 合计614 20 
(2)能否判断是否有99%的把握性认为,学生的数学成绩与物理成绩有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.log2sin10°+log250°+log2sin70°的值为(  )
A.4B.-4C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设$\overrightarrow a,\overrightarrow b$均为单位向量,其夹角为θ,若$|\overrightarrow a+\overrightarrow b|>1,|\overrightarrow a-\overrightarrow b|>1$,则θ的取值范围为($\frac{π}{3}$,$\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.结合下面的算法:
第一步,输入x.
第二步,若x<0,则y=x+3;否则,y=x-1.
第三步,输出y.
当输入的x的值为3时,输出的结果为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知cosC+cosAcosB=2cosAsinB.
(1)求tanA;
(2)若$b=2\sqrt{5}$,AB边上的中线$CD=\sqrt{17}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案