分析 连结BD交CE于O,连结OF,则当BP∥OF时,PB∥平面CEF,推导出DP=3,四棱锥P-ABCD外接球就是三棱锥P-ABC的外接球,从而求出四棱锥P-ABCD外接球的半径,由此能求出四棱锥P-ABCD外接球的体积.
解答 解:连结BD交CE于O,则$\frac{BO}{OD}=\frac{BE}{CD}=\frac{1}{2}$,![]()
连结OF,则当BP∥OF时,PB∥平面CEF,则$\frac{PF}{FD}=\frac{1}{2}$,
∵F是DD1的中点,DD1=4,∴DP=3,
又四棱锥P-ABCD外接球就是三棱锥P-ABC的外接球,
∴四棱锥P-ABCD外接球的半径为:R=$\frac{\sqrt{{3}^{2}+{4}^{2}+{4}^{2}}}{2}$=$\frac{\sqrt{41}}{2}$,
∴四棱锥P-ABCD外接球的体积为:
V=$\frac{4}{3}π{R}^{3}$=$\frac{41\sqrt{41}}{6}π$.
故答案为:$\frac{41\sqrt{41}}{6}π$.
点评 本题考查四棱锥外接球的体积的求法,考查正方体、四棱锥、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | (2,1) | C. | (1,2) | D. | (1,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -$\frac{1}{2}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 252 | B. | 189 | C. | 126 | D. | 63 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{23}{25}$ | B. | -$\frac{23}{25}$ | C. | $\frac{7}{8}$ | D. | -$\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{51}{10}$ | B. | $\frac{30}{7}$ | C. | $\frac{65}{12}$ | D. | $\frac{23}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com