精英家教网 > 高中数学 > 题目详情
10.如图,在棱长为4的正方体ABCD-A1B1C1D1中,E、F分别是AB、DD1的中点,点P是DD1上一点,且PB∥平面CEF,则四棱锥P-ABCD外接球的体积为$\frac{41\sqrt{41}}{6}π$.

分析 连结BD交CE于O,连结OF,则当BP∥OF时,PB∥平面CEF,推导出DP=3,四棱锥P-ABCD外接球就是三棱锥P-ABC的外接球,从而求出四棱锥P-ABCD外接球的半径,由此能求出四棱锥P-ABCD外接球的体积.

解答 解:连结BD交CE于O,则$\frac{BO}{OD}=\frac{BE}{CD}=\frac{1}{2}$,
连结OF,则当BP∥OF时,PB∥平面CEF,则$\frac{PF}{FD}=\frac{1}{2}$,
∵F是DD1的中点,DD1=4,∴DP=3,
又四棱锥P-ABCD外接球就是三棱锥P-ABC的外接球,
∴四棱锥P-ABCD外接球的半径为:R=$\frac{\sqrt{{3}^{2}+{4}^{2}+{4}^{2}}}{2}$=$\frac{\sqrt{41}}{2}$,
∴四棱锥P-ABCD外接球的体积为:
V=$\frac{4}{3}π{R}^{3}$=$\frac{41\sqrt{41}}{6}π$.
故答案为:$\frac{41\sqrt{41}}{6}π$.

点评 本题考查四棱锥外接球的体积的求法,考查正方体、四棱锥、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若直线l的参数方程是$\left\{{\begin{array}{l}{x=1+2t}\\{y=2-t}\end{array}}\right.$(t为参数),则直线l的方向向量$\overrightarrow d$可能是(  )
A.(-2,1)B.(2,1)C.(1,2)D.(1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点F和上顶点B在直线$3x-\sqrt{3}y+3=0$上,A为椭圆上位于x轴上方的一点,且AF⊥x轴,M,N为椭圆C上不同于A的两点,且∠MAF=∠NAF.
(1)求椭圆C的方程;
(2)设直线MN与y轴交于点D(0,d),求实数d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,c=$\sqrt{3}$,C=$\frac{π}{3}$,点D在边AB上,且$\overrightarrow{CD}$•$\overrightarrow{AB}$=0,则线段CD的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2x+$\frac{1}{{2}^{x+2}}$,则f(x)取最小值时对应的x的值为(  )
A.-1B.-$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《九章算术》中记载了公元前344年商鞅督造的一种标准量器--商鞅同方升,其主体部分的三视图如图所示,则该量器的容积为(  )
A.252B.189C.126D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若cos($\frac{π}{8}$-α)=$\frac{1}{5}$,则cos($\frac{3π}{4}$+2α)的值为(  )
A.$\frac{23}{25}$B.-$\frac{23}{25}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给出下列四个命题:①“若x+y≠5,则x≠2或y≠3”是假命题;②已知在△ABC中,“A<B”是“sinA<sinB”成立的充要条件;③若函数$f(x)=\left\{\begin{array}{l}({3a-1})x+4a\\{log_a}x\end{array}\right.\begin{array}{l}({x<1})\\({x≥1})\end{array}$,对任意的x1≠x2都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$<0,则实数a的取值范围是$({\frac{1}{7},1})$;④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为$1-\frac{π}{4}$.其中正确的命题的序号是②④(请把正确命题的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{S_n}{T_n}=\frac{7n+2}{n+3}$,则 $\frac{a_4}{b_4}$=(  )
A.$\frac{51}{10}$B.$\frac{30}{7}$C.$\frac{65}{12}$D.$\frac{23}{6}$

查看答案和解析>>

同步练习册答案