精英家教网 > 高中数学 > 题目详情
14.在三棱柱ABC-A1B1C1中,已知侧按AA1⊥底面ABC,且四边形AA1B1B是边长为2的正方形,CA=CB,点M为棱AB的中点,点E,F分别在按AA1,A1B1
(Ⅰ)若点F为棱A1B1的中点,证明:平面ABC1⊥平面CMF
(Ⅱ)若AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,且CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

分析 (Ⅰ)推导出AA1⊥AB,AB⊥FM,CM⊥AB,从而AB⊥平面CMF,由此能证明平面ABC1⊥平面CMF.
(Ⅱ)记线段A1B1的中点为N,连结MN,以M为原点,MC为x轴,MA为y轴,MN为z轴,建立空间直角坐标系,利用向量法能求出直线AC1与平面CEF所成角的正弦值.

解答 证明:(Ⅰ)∵AA1B1B是边长为2的正方形,∴AA1⊥AB,
又在正方形ABB1A1中,F,M分别是线段A1B1,AB的中点,
∴FM∥A1A,∴AB⊥FM,
在△ABC中,CA=CB,且点M是线段AB的中点,
∴CM⊥AB,
又CM∩FM=M,∴AB⊥平面CMF,
又AB?平面ABC1,∴平面ABC1⊥平面CMF.
解:(Ⅱ)在等腰△CAB中,由CA⊥CB,AB=2,知CA=CB=$\sqrt{2}$,且CM=1,
记线段A1B1的中点为N,连结MN,
由(Ⅰ)知MC、MA、MN两两互相垂直,
以M为原点,MC为x轴,MA为y轴,MN为z轴,建立空间直角坐标系,
则C(1,0,0),E(0,1,$\frac{1}{2}$),F(0,$\frac{1}{4}$,2),A(0,1,0),C1(1,0,2),
$\overrightarrow{CE}$=(-1,1,$\frac{1}{2}$),$\overrightarrow{EF}$=(0,-$\frac{3}{4}$,$\frac{3}{2}$),$\overrightarrow{A{C}_{1}}$=(1,-1,2),
设平面CEF的一个法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=-x+y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{EF}=-\frac{3}{4}y+\frac{3}{2}z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(5,4,2),
设直线AC1与平面CEF所成角为θ,
则sinθ=|cos<$\overrightarrow{A{C}_{1}},\overrightarrow{n}$>|=$\frac{|\overrightarrow{A{C}_{1}}•\overrightarrow{n}|}{|\overrightarrow{A{C}_{1}}|•|\overrightarrow{n}|}$=$\frac{|5-4+4|}{\sqrt{6}•\sqrt{45}}$=$\frac{\sqrt{30}}{18}$,
∴直线AC1与平面CEF所成角的正弦值为$\frac{\sqrt{30}}{18}$.

点评 本题考查面面垂直的证明,考查线面角的正弦值的求法,考查线面角、空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.($\root{6}{2}$-$\frac{2}{x}$)7的展开式中系数为有理数的各项系数之和为(  )
A.-156B.-128C.-28D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2x+$\frac{1}{{2}^{x+2}}$,则f(x)取最小值时对应的x的值为(  )
A.-1B.-$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若cos($\frac{π}{8}$-α)=$\frac{1}{5}$,则cos($\frac{3π}{4}$+2α)的值为(  )
A.$\frac{23}{25}$B.-$\frac{23}{25}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=2sin(πx)的图象向左平移φ(0<φ<4)个单位,得到函数y=g(x)的图象,若实数x1,x2满足|f(x1)-g(x2)|=4,且|x1-x2|min=2,则φ=(  )
A.1B.2C.3D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给出下列四个命题:①“若x+y≠5,则x≠2或y≠3”是假命题;②已知在△ABC中,“A<B”是“sinA<sinB”成立的充要条件;③若函数$f(x)=\left\{\begin{array}{l}({3a-1})x+4a\\{log_a}x\end{array}\right.\begin{array}{l}({x<1})\\({x≥1})\end{array}$,对任意的x1≠x2都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$<0,则实数a的取值范围是$({\frac{1}{7},1})$;④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为$1-\frac{π}{4}$.其中正确的命题的序号是②④(请把正确命题的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点P到圆(x+2)2+y2=1的切线长与到y轴的距离之比为t(t>0,t≠1);
(1)求动点P的轨迹C的方程;
(2)当$t=\sqrt{3}$时,将轨迹C的图形沿着x轴向左移动1个单位,得到曲线G,过曲线G上一点Q作两条渐近线的垂线,垂足分别是P1和P2,求$\overrightarrow{Q{P_1}}•\overrightarrow{Q{P_2}}$的值;
(3)设曲线C的两焦点为F1,F2,求t的取值范围,使得曲线C上不存在点Q,使∠F1QF2=θ(0<θ<π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S24=(  )
A.110B.216C.214D.218

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A,B,C 是平面上不共线的三点,O是△ABC的重心,动点P满足$\overrightarrow{OP}$=$\frac{1}{3}$($\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$+2$\overrightarrow{OC}$),则点P一定为三角形ABC的(  )
A.AB边中线的中点B.AB边中线的三等分点(非重心)
C.重心D.AB边的中点

查看答案和解析>>

同步练习册答案