精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax+lnx,x∈(l,e).
(Ⅰ)若函数f(x)的图象在x=2处的切线的斜率为1,求实数a的值;
(Ⅱ)若f(x)有极值,求实数a的取值范围和函数f(x)的值域;
(Ⅲ)在(Ⅱ)的条件下,函数g(x)=x3-x-2,证明:?x1∈(l,e),?x0∈(l,e),使得g(x0)=f(x1)成立.

解:(Ⅰ)(1分)
∵函数f(x)的图象在x=2处的切线的斜率为1,∴(2分)
(3分)
(Ⅱ)由,可得
∵x∈(1,e)

(5分)
经检验时,f(x)有极值.
∴实数a的取值范围为.(6分)
列表

f(x)的极大值为(7分)
又∵f(1)=a,f(e)=ae+1
由a≥ae+1,解得又∵(8分)
∴当时,函数f(x)的值域为(9分)
时,函数f(x)的值域为.(10分)
(Ⅲ)证明:∵当x∈(1,e)时,g'(x)=3x2-1>0,
∴g(x)在(1,e)上为单调递增函数(11分)
∵g(1)=-2,g(e)=e3-e-2∴g(x)在(1,e)的值域为(-2,e3-e-2)(12分)
∵e3-e-2>,-2<ae+1,-2<a
⊆(-2,e3-e-2),⊆(-2,e3-e-2)
∴?x1∈(1,e),?x0∈(1,e),使得g(x0)=f(x1)成立.(14分)
分析:(Ⅰ)先求导数,再由函数f(x)的图象在x=2处的切线的斜率为1,令求解.
(Ⅱ)f(x)有极值,则有解,由x∈(1,e)得到,再由求得a的范围.求值域时,先求极值,再由a的范围,确定端点值与极值的大小关系,从而确定值域.要注意讨论.
(Ⅲ):证明?x1∈(l,e),?x0∈(l,e),有g(x0)=f(x1)成立,即证函数f(x)的值域是函数g(x)的值域的子集.所以分别求得两个函数的值域,再盾集合的关系即可
点评:本题主要考查导数的几何意义以及用导数求函数的极值、最值和值域等问题,有参数时一定要注意分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案