精英家教网 > 高中数学 > 题目详情
已知点F1、F2分别是椭圆
x2
2
 
+
y2
1
 
=1的左、右焦点,过F2作倾斜角为
π
4
的直线,求△F1AB的面积.
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由椭圆
x2
2
 
+
y2
1
 
=1可得椭圆的左焦点F1、右焦点F2.可得直线AB的方程为y=x-1,设A(x1,y1),B(x2,y2).与椭圆的方程联立化为关于x的一元二次方程,利用根与系数的关系和弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出.
解答: 解:由椭圆
x2
2
 
+
y2
1
 
=1可得椭圆的左焦点F1(-1,0)、右焦点F2(1,0).
∴直线AB的方程为y=x-1,设A(x1,y1),B(x2,y2).
联立
y=x-1
x2+2y2=2
,化为3x2-4x=0,
x1+x2=
4
3
,x1x2=0.
∴|AB|=
(1+12)[(x1+x2)2-4x1x2]
=
2[(
4
3
)2-4×0]
=
4
2
3

点F1到直线AB的距离d=
|-1×1-0-1|
2
=
2

S△AF1B=
1
2
•d•|AB|
=
1
2
×
2
×
4
2
3
=
4
3
点评:本题考查了直线与椭圆的相交问题转化为直线与椭圆的方程联立及根与系数的关系和弦长公式、点到直线的距离公式、三角形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,对任意的正整数n,都有(1-an+1)(2+an)=2,且an≠0.
(Ⅰ)求证:{
1
an
+1}
是等比数列;
(Ⅱ)求数列{
n
an
}
的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方形ABCD中,AB=4,BC=2,E为CD的中点,将长方形ABCD沿线段AE折起,使平面DAE⊥平面ABCE,得到四棱锥D-ABCE.

(1)求证:AD⊥BE
(2)设点P是侧棱DB上一点,
DP
DB
,若二面角C-AE-P的大小为
π
4
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

比较下列两组数的大小,并说明理由.
(1)
7
+
10
3
+
14

(2)当x>1时,x3与x2-x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R+,且
a
1+a
+
b
1+b
+
c
1+c
=1,求证:a+b+c
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成的角的余弦值
(2)求二面角E-AB-C的余弦值
(3)O点到面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x+1|-|x|.
(1)求不等式f(x)>0的解集;
(2)若存在x∈R,使得f(x)≤m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集为[2,3],求实数a的值;
(2)若在(1)的条件下,存在实数t,使得f(
t
2
)≤m-f(-t)
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设n∈N*且n为奇数,则7
C
1
n
+
72C
2
n
+…+
7nC
n
n
除以9的余数为
 

查看答案和解析>>

同步练习册答案