精英家教网 > 高中数学 > 题目详情
如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.
(Ⅰ)证明:O1O⊥底面ABCD;
(Ⅱ)若∠CBA=60°,求二面角C1-OB1-D的余弦值.
考点:与二面角有关的立体几何综合题,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由已知中,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.可得O1O∥CC1∥BB1且CC1⊥AC,BB1⊥BD,进而OO1⊥AC,OO1⊥BD,再由线面垂直的判定定理得到O1O⊥底面ABCD;
(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长均为2a,设AB为2,若∠CBA=60°,OA=OC=1,OB=OD=
3
,以O为坐标原点,分别以OB,OC,OO1为x,y,z轴正方向建立空间直角坐标系,求出平面BDD1B1和平面OB1C1的法向量,代入向量夹角公式,求出二面角的余弦值.
解答: 证明:(Ⅰ)∵四棱柱ABCD-A1B1C1D1的所有棱长都相等,
∴四边形ABCD为菱形,
又∵AC∩BD=O,
故O为BD的中点,
同理O1也是B1D1的中点,
又∵四边形ACC1A1和四边形BDD1B1均为矩形,
∴O1O∥CC1∥BB1且CC1⊥AC,BB1⊥BD,
∴OO1⊥AC,OO1⊥BD,
又∵AC∩BD=O,AC,BD?平面ABCD,
∴O1O⊥底面ABCD;
解:(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长均相等,所以四边形ABCD是菱形,
∴AC⊥BD,
又∵O1O⊥底面ABCD,
∴OB,OC,OO1两两垂直,

如图,以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴建立直角坐标系O-xyz.
设AB=2,
∵∠CBA=60°,
∴OA=OC=1,OB=OD=
3

则O(0,0,0),B1
3
,0,2
),C1(0,1,2)
易知,
n1
=(0,1,0)是平面BDD1B1的一个法向量,
n2
=(x,y,z)是平面OB1C1的一个法向量,则
n2
OB1
=0
n2
OC1
=0
,即
3
x+2z=0
y+2z=0

取z=-
3
,则x=2,y=2
3
,所以
n2
=(2,2
3
,-
3

设二面角C1-OB1-D的大小为θ,易知θ是锐角,于是:
cosθ=|cos<
n1
n2
>|=|
n1
n2
|
n1
|•|
n2
|
|=
2
3
19
=
2
57
19

故二面角C1-OB1-D的余弦值为
2
57
19
点评:本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点作倾斜角为30°的直线l与抛物线交于P、Q两点,分别过P、Q两点作PP1,QQ1垂直于抛物线的准线于P1、Q1,若|PQ|=2,则四边形PP1Q1Q的面积是(  )
A、
3
B、2
C、3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(2,-1)共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且
OM
OA
OB
(λ,μ∈R),证明λ22-
2
3
λμ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(1,2)是抛物线y2=2px上一点,过点P作斜率分别为k,-
1
k
的直线l1,l2分别交抛物线于异于P的A,B两点,点Q(5,-2).
(1)当l1,l2的斜率分别为2与-
1
2
时,判断直线AB是否经过点Q;
(2)当△PAB的面积等于32
2
时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为圆O的直径,点E,F在圆上,四边形ABCD为矩形,AB∥EF,∠BAF=
π
3
,M为BD的中点,平面ABCD⊥平面ABEF.求证:
(1)BF⊥平面DAF;
(2)ME∥平面DAF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=10,BC=6,沿对角线BD吧△ABD折起到△A1BD的位置,使A1在平面BCD上的射影O恰好在CD上.
(1)求证:BC⊥A1D;
(2)求直线A1C与平面A1BD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

网络公司为了解某地区人群上网情况,随机抽取了100名网民进行调查,其中女性有55名.下面是根据调查结果绘制的日均上网时间的频率分布图(时间单位为:时):
分组 [0,1) [1,2) [2,3) [3,4) [4,5) [5,6)
频率  0.1 0.18  0.22   0.25 0.2   0.05
将日均上网时间不低于4小时的网民成为“网迷”,已知“网迷”中有10名女性.
(Ⅰ)根据已知条件完成下面2×2列联表,并判断是否有95%的把握认为“网迷”与性别有关?
  非网迷 网迷 合计
     
     
合计      
(Ⅱ)将日均上网时间不低于5小时的网民成为“超级网迷”,已知超级网迷中有2名女性,若从“超级网迷”中任意选取2人,求至少有1名女性网民的概率.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0)  0.100 0.050  0.010   0.001
 k0  2.706 3.841  6.635  10.828 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一辆汽车在一条水平的公路上向正西方向行驶,在A处分别测得山顶上铁塔的塔顶E的仰角为θ和山脚点O(点O是点E在公路所在平面上的射影)的方位角是西偏北φ,再行驶akm到达B处,测得山脚点O的方位角是西偏北β.请设计一个方案,用测量的数据和有关公式写出计算OE的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AE切圆O于点E,AC交圆O于B,C两点,且与直径DE交于点M,DM=2,CM=3,BM=6,则tanA=
 

查看答案和解析>>

同步练习册答案