精英家教网 > 高中数学 > 题目详情
如图,一辆汽车在一条水平的公路上向正西方向行驶,在A处分别测得山顶上铁塔的塔顶E的仰角为θ和山脚点O(点O是点E在公路所在平面上的射影)的方位角是西偏北φ,再行驶akm到达B处,测得山脚点O的方位角是西偏北β.请设计一个方案,用测量的数据和有关公式写出计算OE的步骤.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:第一步,由正弦定理求OA;第二步,OE=OAtanθ,可得结论.
解答: 解:第一步,求OA,在△AOB中,∠ABO=π-β,∠AOB=β-φ,AB=a,
由正弦定理得OA=
asin(π-β)
sin(β-φ)
=
asinβ
sin(β-φ)

第二步,求OE,在Rt△EOA中,∠EAO=θ,∠EOA=90°,则OE=OAtanθ=
asinβtanθ
sin(β-φ)
点评:本题主要考查了解三角形的实际应用.考查了运用数学知识,建立数学模型解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,ABCD是梯形,BC∥AD,E,F分别是AD,PC的中点,△ABE,△BEC,△ECD都是边长为1的等边三角形.
(1)求证:AP∥平面EFB;
(2)若△PAD是等边三角形,求直线EF与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.
(Ⅰ)证明:O1O⊥底面ABCD;
(Ⅱ)若∠CBA=60°,求二面角C1-OB1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:对于任意的正整数n,(2+
3
n必可表示成
s
+
s-1
的形式,其中s∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(-m,0),B(m,0)(m≠0),直线AC,BC相交于C,而且他们的斜率之积为-
1
m2
,若点P(1,
2
2
)是点C的轨迹上的点,直线l的方程为x=2.
(Ⅰ)求点C的轨迹方程;
(Ⅱ)过点E(1,0)的直线与点C的轨迹相交于D,M两点(不经过P点),直线DM与直线l相交于N,记直线PD,PM,PN的斜率分别为k1,k2,k3.求证:k1+k2=2k3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.
(Ⅰ)求C的方程;
(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,
(ⅰ)证明直线AE过定点,并求出定点坐标;
(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1
x2
a2
-
y2
b2
=1过点P且离心率为
3

(Ⅰ)求C1的方程;
(Ⅱ)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
在正方形网格中的位置如图所示.若
c
a
b
(λ,μ∈R),则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆C的左右焦点,A是椭圆C短轴的一个顶点,B是直线AF2与椭圆C的另一个交点,若∠F1AF2=60°,△AF1B的面积为40
3
,则椭圆C的方程为
 

查看答案和解析>>

同步练习册答案