精英家教网 > 高中数学 > 题目详情
12.已知点P是圆C:(x+$\sqrt{3}$)2+y2=16上任意一点,A($\sqrt{3}$,0)是圆C内一点,线段AP的垂直平分线l和半径CP交于点Q,O为坐标原点.
(1)当点P在圆上运动时,求点Q的轨迹E的方程.
(2)设过点B(0,-2)的动直线与E交于M,N两点,当△OMN的面积最大时,求此时直线的方程.

分析 (1)直接由题意可得|CQ|+|AQ|=4>|AC|=2$\sqrt{3}$,符合椭圆定义,且得到长半轴和半焦距,再由b2=a2-c2求得b2,则点Q的轨迹方程可求;
(2)设M(x1,y1),N(x2,y2),由题意可设直l的方程为:y=kx-2,与椭圆的方程联立可得根与系数的关系,再利用三角形的面积计算公式即可得出S△OMN.通过换元再利用基本不等式的性质即可得出.

解答 解:(1)由题意知|PQ|=|AQ|,
又∵|CP|=|CQ|+|PQ|=4…(2分)
∴|CQ|+|AQ|=4>|AC|=2$\sqrt{3}$
由椭圆定义知Q点的轨迹是椭圆,a=2,c=$\sqrt{3}$…(3分)
∴b=1,
∴点Q的轨迹E的方程$\frac{{x}^{2}}{4}+{y}^{2}$=1.…(5分)
(2)由题意知所求的直线不可能垂直于x轴,所以可设直线为:y=kx-2,M(x1,y1),N(x2,y2),
联立方程组,将y=kx-2代入$\frac{{x}^{2}}{4}+{y}^{2}$=1得(1+4k2)x2-16kx+12=0…(6分)
当△>0时,即k2>$\frac{3}{4}$时,x1+x2=$\frac{16k}{1+4{k}^{2}}$,x1x2=$\frac{12}{1+4{k}^{2}}$,…(7分)

则△OMN的面积S=$\frac{1}{2}$|OB||x1-x2|=$\frac{4\sqrt{4{k}^{2}-3}}{1+4{k}^{2}}$…(8分)
设$\sqrt{4{k}^{2}-3}$=t>0,
∴${S_{△OMN}}=\frac{4t}{{{t^2}+4}}=\frac{4}{{t+\frac{4}{t}}}≤1,当且仅当t=\frac{4}{t}即t=2时面积最大$,最大值为1…(10分)
∴$\sqrt{4{k}^{2}-3}$=2,k=±$\frac{\sqrt{7}}{2}$,满足△>0…(11分)
∴直线的方程为y=±$\frac{\sqrt{7}}{2}$x-2…(12分)

点评 本题综合考查了椭圆的标准方程及其性质、椭圆的方程联立可得根与系数的关系、三角形的面积计算公式、基本不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,考查了换元法和转化方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(x)=logax(a>1)的导函数是f′(x),记A=f′(2),B=f(3)-f(2),C=f′(3),则(  )
A.A>B>CB.A>C>BC.B>A>CD.C>B>A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(-2,x,1),$\overrightarrow{b}$=(4,-2,x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x的值为(  )
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\sqrt{x-1}$+lg(6-2x)的定义域是(  )
A.[1,3)B.(1,3)C.[1,3]D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点A,B,C在一条直线上,点O为直线AB外一点,等差数列{an}满足$\overrightarrow{OA}$=a5$\overrightarrow{OB}$+a2012$\overrightarrow{OC}$,数列{bn}满足b1=2,且对任意的m,n∈N*,都有$\frac{{b}_{n+m}}{{b}_{n}}$=b1,则数列{an+bn}的前2016项的和为(  )
A.1006+22017B.1010+22016C.1006+22016D.2014+22017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=-x3+6x2-9x+8,则过点(0,0)可以作几条直线与函数y=f(x)图象相切(  )
A.3B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某一考点有64个考场,考场编号为001~064,现根据考场号,采用系统抽样的方法,抽取8个考场进行监控抽查,已抽看了005号考场,则下列被抽到的考场号是(  )
A.050B.051C.052D.053

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的余弦值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)是定义在R上的增函数,且满足f(x-2)+f(-x+2)=0,若任意的x,y∈R,不等式f(x2-4x+4)+f(y2-6y)≤0恒成立,则当x≥2时,x2+y2的取值范围(  )
A.(13,49)B.[2,2+$\sqrt{13}$]C.[2,13]D.[4,22+6$\sqrt{13}$]

查看答案和解析>>

同步练习册答案