精英家教网 > 高中数学 > 题目详情

【题目】已知正方体的棱长为1,给出下列四个命题:①对角线被平面和平面三等分;②正方体的内切球,与各条棱相切的球,外接球的表面积之比为;(3)以正方体的顶点为顶点的四面体的体积都是;④正方体与以为球心,1为半径的球的公共部分的体积是,其中正确命题的序号为__________.

【答案】①②④.

【解析】

根据点、直线、平面之间的位置关系的定理,以及各种空间几何体的体积计算公式,逐项判断,即可得到本题答案.

①如图所示,假设对角线与平面相交于点M,可得平面,所以,解得,因此对角线被平面和平面三等分,正确;

②易得正方体的内切球、与各条棱相切的球、外接球的半径分别为

因此表面积之比,正确;

③以为顶点的三棱锥的体积,不正确;

④正方体与以A为球心,1为半径的球的公共部分的体积,正确.

故答案为:①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为为参数).

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)若直线与曲线交于两点,求的值,并求定点两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y万元有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

1)画出散点图并判断是否线性相关;

2)如果线性相关,求线性回归方程;

3)估计使用年限为10年时,维修费用是多少?

附注:①参考公式:回归方程中斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面程序框图中,已知,则输出的结果是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.

(1)求的值;

2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?

(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)

列联表

男性

女性

合计

消费金额

消费金额

合计

临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合.

1)若集合含有三个元素,且,这样的集合有多少个?所有集合中个元素之和是多少?

2)若集合各含有三个元素,且,这样的集合有多少种配对方式?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,下列判断正确的是(

A.A1C⊥面AB1D1B.A1C⊥面AB1C1D

C.A1B⊥面AB1D1D.A1BAD1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质.

1)判断函数是否具有“性质”,若具有“性质”,求出所有的值的集合,若不具有“性质”,请说明理由;

2)已知函数具有“性质”,且当时,,求函数在区间上的值域;

3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数的图像与直线2017个公共点,求实数的值.

查看答案和解析>>

同步练习册答案