精英家教网 > 高中数学 > 题目详情
18.设曲线f(x)=$\sqrt{{m^2}+1}cosx$(m∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为(  )
A.B.C.D.

分析 求出原函数的导函数,得到函数y=x2g(x)的解析式,再由函数为奇函数且当x→0+时,y<0得答案.

解答 解:由f(x)=$\sqrt{{m^2}+1}cosx$(m∈R),得f′(x)=-$\sqrt{{m}^{2}+1}sinx$(m∈R).
∴y=x2g(x)=$-\sqrt{{m}^{2}+1}{x}^{2}sinx$.
该函数为奇函数,且当x→0+时,y<0.
故选:D.

点评 本题考查函数的图象,考查函数奇偶性的性质及函数值的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设x∈R,则“2-x≥0”是“|x-1|≤1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}{2^x}\\ log_2^x\end{array}\right.$$\begin{array}{l}x≤0\\ x>0\end{array}$,若$f(a)=\frac{1}{2}$,则a=(  )
A.-1B.-1或$\sqrt{2}$C.$\sqrt{2}$D.-1或$-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥A-BCD的所有棱长都相等,若AB与平面α所成角等于$\frac{π}{3}$,则平面ACD与平面α所成角的正弦值的取值范围是(  )
A.[$\frac{3-\sqrt{6}}{6}$,$\frac{3+\sqrt{6}}{6}$]B.[$\frac{3-\sqrt{6}}{6}$,1]C.[$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{6}$]D.[$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数$f(x)=\frac{4x}{x+4}{,_{\;}}且{x_1}=1,{x_{n+1}}=f({x_n})$,则x2017=$\frac{1}{505}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数$f(x)=\left\{\begin{array}{l}{3^x}-a,x≤1\\ ln({x-1}),x>1\end{array}\right.$有两个不同的零点,则实数a的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公路段在某一时刻内监测到的车速频率分布直方图如图所示.
(1)求纵坐标中h的值及第三个小长方形的面积;
(2)求平均车速$\overline{v}$的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)求不等式|x-1|+|x-2|-3>0的解集;
(2)已知a1,a2,…,an∈R,且a1•a2•…•an=1,求证:(1+a1)•(1+a2)…(1+an)≥2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足的约束条件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$,表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为(  )
A.$\frac{181}{16}$B.1C.$\frac{9}{13}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案