精英家教网 > 高中数学 > 题目详情
7.(1)求不等式|x-1|+|x-2|-3>0的解集;
(2)已知a1,a2,…,an∈R,且a1•a2•…•an=1,求证:(1+a1)•(1+a2)…(1+an)≥2n

分析 (1)对x的范围进行讨论,去绝对值符号解出;
(2)利用基本不等式证明.

解答 (1)解:当x<1时,不等式化为1-x+2-x-3>0,解得x<0;
当1≤x≤2时,不等式化为x-1+2-x-3>0,方程无解;
当x>2,不等式化为x-1+x-2-3>0,解得x>3.
综上,不等式的解集为{x|x<0或x>3}.
(2)证明:∵a1,a2,…,an∈R,
∴1+a1≥2$\sqrt{{a}_{1}}$,1+a2≥2$\sqrt{{a}_{2}}$,…,1+an≥2$\sqrt{{a}_{n}}$,
∴(1+a1)•(1+a2)…(1+an)≥2n•$\sqrt{{a}_{1}{a}_{2}…{a}_{n}}$=2n
当且仅当a1=a2=…=an=1时取等号.

点评 本题考查了含绝对值的不等式的解法,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列推理正确的是(  )
A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖
B.因为a>b,a>c,所以a-b>a-c
C.若a,b均为正实数,则lg a+lg b≥$\sqrt{lga•lgb}$
D.若a为正实数,ab<0,则$\frac{a}{b}$+$\frac{b}{a}$=-($\frac{-a}{b}$+$\frac{-b}{a}$)≤-2 $\sqrt{(\frac{-a}{b})•(\frac{-b}{a})}$=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设曲线f(x)=$\sqrt{{m^2}+1}cosx$(m∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式:x2>(k+1)x-k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+2ax+2lnx(a∈R),g(x)=2ex+3x2(e为自然对数的底数).
(Ⅰ)讨论函数f(x)的极值点的个数;
(Ⅱ)若函数y=f(x)的图象与函数y=g(x)的图象有两个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z=x+(y-1)i(x,y∈R),若|z|≤1,则x+y≥2的概率为(  )
A.$\frac{1}{4}$B.$\frac{π-2}{4π}$C.$\frac{1}{2π}$D.$\frac{3π+2}{4π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知AB为半圆O的直径,点C为半圆上一点,过点C作半圆的切线CD,过点B作BD⊥CD于点D.求证:BC2=BA•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知sin43°=a,则a<$\frac{{\sqrt{2}}}{2}$(填“>”或“<”);sin73°=$\frac{\sqrt{3}a+\sqrt{1{-a}^{2}}}{2}$(用a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知锐角α满足cosα=$\frac{{\sqrt{5}}}{5}$,则tan2α=-$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案