分析 利用三角函数恒等变换的应用化简函数解析式为f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,利用三角函数周期公式可求最小正周期,利用正弦函数的图象和性质可得sin(2x+$\frac{π}{4}$)∈[-1,1],从而可求f(x)的值域.
解答 解:∵f(x)=2cos2x+cos($\frac{π}{2}$-2x)
=1+cos2x+sin2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π,
∵sin(2x+$\frac{π}{4}$)∈[-1,1],
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1∈[1-$\sqrt{2}$,1$+\sqrt{2}$].
故答案为:π,[1-$\sqrt{2}$,1$+\sqrt{2}$].
点评 本题主要考查了三角函数恒等变换的应用,三角函数周期公式的应用,正弦函数的图象和性质的应用,考查了转化思想和数形结合思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{12}{5}$ | B. | $\frac{12}{5}$ | C. | -$\frac{5}{12}$ | D. | ±$\frac{12}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>4或x<0} | B. | {x|1<x<4} | C. | {x|1<x≤4} | D. | {x|1≤x≤4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{6}$ | B. | 4$\sqrt{6}$ | C. | 6$\sqrt{6}$ | D. | 12$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com