精英家教网 > 高中数学 > 题目详情
已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.

思路分析:“不能同时”包含情况较多,而其否定“同时大于”仅有一种情况,因此用反证法.

证法一:假设三式同时大于,

即有(1-a)b>,(1-b)c>,(1-c)a>,

三式同向相乘,得(1-a)a(1-b)b(1-c)c>.

又(1-a)a≤()2=.

同理,(1-b)b≤,(1-c)c≤.

∴(1-a)a(1-b)b(1-c)c≤,与假设矛盾,结论正确.

证法二:假设三式同时大于,

∵0<a<1,∴1-a>0,

.

同理都大于.

三式相加,得,矛盾.

∴原命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
+
b
+
c
=
0
,|
a
|=3,|
b
|=5,|
c
|=7

(1)求
a
b
的夹角θ的余弦值;
(2)求实数k,使k
a
+
b
a
-2
b
垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡一模)已知
a
+
b
+
c
=
0
,且
a
c
的夹角为60°,|
b
|=
3
|
a
|,则cos<
a
b
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
+
b
+
c
=
0
,|
a
|=3,|
b
|=5,|
c
|=7
(1)求<
a
b
>;
(2)是否存在实数k,使k
a
+
b
a
-2
b
互相垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

分析与综合法证明不等式:已知a+b+c=0,求证:ab+bc+ca≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a+b+c=0,且a、b、c不同时为零,则ab+bc+ca的值的符号为
.(填“正”或“负”)

查看答案和解析>>

同步练习册答案