精英家教网 > 高中数学 > 题目详情
2.设P:方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线;q:函数g(x)=x3+mx2+(m+$\frac{4}{3}$x)+6,在R上有极值点,求使“p且q”为真命题的实数m的取值范围.

分析 命题p,方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线则(2m-1)(m+2)<0,求得m.
命题q:函数g(x)=x3+mx2+(m+$\frac{4}{3}$)x+6在R上有极值点,可根据二次方程根与系数的关系(韦达定理)及二次函数零点个数的判断方法,得到命题p与命题q对应的参数a的取值范围,即可得到答案.

解答 解:当命题p为真时,方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线,则(2m-1)(m+2)<0,
解得-2<m<$\frac{1}{2}$;
当命题q为真时:g′(x)=3x2+2mx+m+$\frac{4}{3}$,△=4m2-12(m+$\frac{4}{3}$)>0∴m2-3m-4>0
故m>4或m<-1.
∵“p∧q”为真命题,∴p,q同时为真命题.
$\left\{\begin{array}{l}{m>4或m<-1}\\{-2<m<\frac{1}{2}}\end{array}\right.$⇒-2<m<-1

点评 本题主要考查复合命题与简单命题之间的真假关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x-1)lnx+1.
(1)求f′(e)(e为自然对数的底数);
(2)求曲线f(x)在点(e,f(e))处的切线方程;
(3)若函数g(x)=$\frac{f(x)}{x}$,证明:g(x)>$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$2sin\frac{x}{2}-cos\frac{x}{2}=0$.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos({\frac{π}{4}+x})sinx}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点F1,F2,分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,其上顶点为A,且△AF1F2是斜边长为2的等腰直角三角形.
(1)求椭圆C的标准方程;
(2)设过点F2,斜率为k的直线l交椭圆C于点D,E,交y轴于点P(如图),问:是否存在实数k,使得△ODF2与△OPE的面积相等,如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点G是三角形ABC的重心,A(0,-b),B(0,b)(b>0),在x轴上存在一点M,使$\overrightarrow{GM}=λ\overrightarrow{AB}(λ∈R,λ≠0)$且${\overrightarrow{MA}^2}={\overrightarrow{MC}^2}$.
(1)求证:点C的轨迹是椭圆,并求椭圆的离心率.
(2)当b=1时,设过上述椭圆右焦点F的直线交椭圆于P,Q两点,若直线x=t上的任意一点R,总有$\overrightarrow{RP}•\overrightarrow{RQ}>0$,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个直角梯形的面积为2,在斜二测画法下,它的直观图面积为$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一游泳者沿海岸边从与海岸成30°角的方向向海里游了400米,由于雾大,他看不清海岸的方向,若他任选了一个方向继续游下去,那么在他又游400米之前能到达岸边的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\vec a$与$\vec b$的夹角为60°,$\overrightarrow{c}$=5$\overrightarrow{a}$-3$\overrightarrow{b}$,$\overrightarrow{d}$=3$\overrightarrow{a}$+k$\overrightarrow{b}$,当实数k为何值时.
(1)$\vec c$∥$\vec d$;
(2)$\vec c$⊥$\vec d$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式ax<b的解集为(-2,+∞),则关于的不等式ax2+bx-3a>0的解集为(  )
A.(-∞,-3)∪(-1,+∞)B.(-∞,-1)∪(3,+∞)C.(-3,1)D.(-1,3)

查看答案和解析>>

同步练习册答案