19£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=x2+4x+3µÄ¶¥µãΪA£¬Å×ÎïÏßÓëxÖáÏཻÓÚµãBºÍµãC£¨µãBÔÚµãCµÄ×ó²à£©£¬ÓëyÖáÏཻÓÚµãD£¬µãPΪ¶Ô³ÆÖáÖ±ÏßlÉϵÄÒ»¸ö¶¯µã£¬ÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶È´ÓÅ×ÎïÏߵĶ¥µãAÏòÉÏÔ˶¯£¬ÉèµãPÔ˶¯µÄʱ¼äΪtÃ룮
£¨1£©ÇóµãCµÄ×ø±ê£»
£¨2£©¢Ùµ±tΪ2Ãëʱ£¬¡÷PCDµÄÖܳ¤×îС£»
¢Úµ±tΪ4¡À$\sqrt{6}$»ò4Ãëʱ£¬¡÷PCDÊÇÒÔCDΪÑüµÄµÈÑüÈý½ÇÐΣ»£¨½á¹û±£Áô¸ùºÅ£©
£¨3£©Ì½¾¿µãPÔÚÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷PCDÊÇÒÔCDΪб±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉy=0£¬½âµÃx=-3»ò-1£¬¼´¿ÉµÃµ½CµÄ×ø±ê£»
£¨2£©¢ÙÓÉÓÚCDΪ¶¨Öµ£¬Ö»ÐèPC+PDµÄºÍ×îС£¬ÓÉCΪB¹ØÓÚÖ±Ïßx=-2¶Ô³Æ£¬Á¬½ÓBD£¬¼´¿ÉµÃµ½×îСֵµÄµãP£»¢ÚÓÉÌâÒâ¿ÉµÃPD=CD»òPC=CD£¬ÔËÓÃÁ½µãµÄ¾àÀ빫ʽ¼ÆËã¼´¿ÉµÃµ½ËùÇó£»
£¨3£©£¨3£©¼ÙÉè´æÔÚÒ»µãP£¬Ê¹¡÷PCDÊÇÒÔCDΪб±ßµÄÖ±½ÇÈý½ÇÐΣ®ÉèP£¨-2£¬n£©£¬¼´ÓÐPC¡ÍPD£¬ÔËÓÃÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£º£¨1£©Å×ÎïÏßy=x2+4x+3£¬Áîy=0£¬¿ÉµÃx=-3»ò-1£¬
¼´ÓÐC£¨-1£¬0£©£»
£¨2£©¢ÙÓÉy=0¿ÉµÃB£¨-3£¬0£©£¬C£¨-1£¬0£©£¬
ÓÉx=0£¬¿ÉµÃy=3£¬¼´D£¨0£¬3£©£¬
ÓÉÓÚCDΪ¶¨Öµ£¬Ö»ÐèPC+PDµÄºÍ×îС£¬
ÓÉCΪB¹ØÓÚÖ±Ïßx=-2¶Ô³Æ£¬Á¬½ÓBD£¬
¼´ÓÐPC+PDµÄ×îСֵΪBD£¬
ÓÉBDµÄ·½³ÌΪy=x+3£¬Áîx=-2£¬½âµÃy=1£¬
¼´ÓÐP£¨-2£¬1£©£¬
ÓÉA£¨-2£¬-1£©£¬¿ÉµÃt=2ÃëʱÖܳ¤×îС£»
¢ÚÓÉÌâÒâ¿ÉµÃPD=CD»òPC=CD£¬
ÉèP£¨-2£¬m£©£¬¼´ÓÐ$\sqrt{4+£¨m-3£©^{2}}$=$\sqrt{10}$»ò$\sqrt{1+{m}^{2}}$=$\sqrt{10}$£¬
½âµÃm=3¡À$\sqrt{6}$»òm=3£¨-3ÉáÈ¥£©£¬
¼´ÓÐt=4¡À$\sqrt{6}$»ò4£»
£¨3£©¼ÙÉè´æÔÚÒ»µãP£¬Ê¹¡÷PCDÊÇÒÔCDΪб±ßµÄÖ±½ÇÈý½ÇÐΣ®
ÉèP£¨-2£¬n£©£¬¼´ÓÐPC¡ÍPD£¬
¿ÉµÃkPC•kPD=-1£¬¼´Îª$\frac{n}{-1}$•$\frac{n-3}{-2}$=-1£¬
½âµÃn=1»ò2£¬
¹Ê´æÔÚÒ»µãP£¨-2£¬1£©»ò£¨-2£¬2£©£¬
ʹ¡÷PCDÊÇÒÔCDΪб±ßµÄÖ±½ÇÈý½ÇÐΣ®
¹Ê´ð°¸Îª£º2£¬4¡À$\sqrt{6}$»ò4£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿¼²éÈý½ÇÐεÄÐÎ×´µÄÅжϺÍÔËÓã¬×¢ÒâÔËÓöԳÆÐÔÇó×îСֵ£¬ÒÔ¼°Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÆæº¯Êýf£¨x£©ÊÇÒÔ4ΪÖÜÆÚµÄÖÜÆÚº¯Êý£¬Ôòf£¨2£©=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬E¡¢F·Ö±ðΪAB¡¢C1D1µÄÖе㣬ÔòA1B1ÓëÆ½ÃæA1EF¼Ð½ÇµÄÕýÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{6}}{2}$B£®$\frac{\sqrt{6}}{3}$C£®$\frac{\sqrt{6}}{4}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚijµØÕð¿¹Õð¾ÈÔÖÖУ¬Ä³Ò½Ôº´Ó10ÃûÒ½ÁÆ×¨¼ÒÖгéµ÷6Ãû±¼¸°êâÔÖǰÏߣ¬ÆäÖÐÕâ10Ãûר¼ÒÖÐÓÐ4ÃûÊǹǿÆ×¨¼Ò£®
£¨1£©³éµ÷µÄ6Ãûר¼ÒÖÐÇ¡ÓÐ2ÃûÊǹǿÆ×¨¼ÒµÄ³éµ÷·½·¨ÓжàÉÙÖÖ£¿
£¨2£©ÖÁÉÙÓÐ2Ãû¹Ç¿Æ×¨¼ÒµÄ³éµ÷·½·¨ÓжàÉÙÖÖ£¿
£¨3£©ÖÁ¶àÓÐ2Ãû¹Ç¿Æ×¨¼ÒµÄ³éµ÷·½·¨ÓжàÉÙÖÖ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Í¼ÖÐÒõÓ°²¿·ÖµÄÃæ»ýÓö¨»ý·Ö±íʾΪ£¨¡¡¡¡£©
A£®${¡Ò}_{0}^{1}$2xdxB£®${¡Ò}_{0}^{1}$£¨2x-1£©dxC£®${¡Ò}_{0}^{1}$£¨2x+1£©dxD£®${¡Ò}_{0}^{1}$£¨1-2x£©dx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª¦ÈÂú×ã$\left\{\begin{array}{l}{a\frac{1}{co{s}^{2}¦È}-bcos¦È=2a}\\{bco{s}^{2}¦È-a\frac{1}{cos¦È}=2b}\end{array}\right.$ £¨a£¬b¡Ù0£©£¬ÄÇôa¡¢bµÄ¹ØÏµÎªa¡Àb=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÈçͼËùʾ£¬ÔÚÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ®
£¨1£©ÇóÖ¤£ºAC1¡ÍB1C£»
£¨2£©ÇóÖ¤£ºAC1¡ÍCB1D1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨cos¦È£¬sin¦È£©£¬$\overrightarrow{b}$=£¨-1£¬2£©£®
£¨1£©Èô$\overrightarrow{a}$$¡Í\overrightarrow{b}$£¬Çó$\frac{sin¦È-cos¦È}{sin¦È+cos¦È}$µÄÖµ£»
£¨2£©Èô|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{6}$£¬¦È¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬Çósin£¨$¦È+\frac{¦Ð}{4}$£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Å×ÎïÏßy2=2xÉÏÓëÆä½¹µã¾àÀëµÈÓÚ3µÄµãµÄºá×ø±êÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®$\frac{5}{2}$D£®$\frac{7}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸