分析 求出f(x)的导数,令x=0,可得切线l的斜率和切点,切线方程l,再求$y=\frac{x}{e^x}$导数,由过Q的切线与切线l平行时,距离最短.求得切点Q的坐标,运用点到直线的距离公式,即可得到最小值.
解答 解:f(x)=-f'(0)ex+2x+3,
可得f′(x)=-f'(0)ex+2,
即有f′(0)=-f'(0)e0+2,
解得f′(0)=1,
则f(x)=-ex+2x+3,
f(0)=-e0+0+3=2,
则切线l:y=x+2,
$y=\frac{x}{e^x}$的导数为y′=$\frac{1-x}{{e}^{x}}$,
过Q的切线与切线l平行时,距离最短.
由$\frac{1-x}{{e}^{x}}$=1,即ex=1-x,
由y=ex,y=1-x的图象可得x=0,
即切点Q(0,0),
则Q到切线l的距离为$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,同时考查点到直线的距离公式运用,运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| x | 0 | 1 | 2 | 3 | 4 |
| y | 2.2 | 4.3 | 4.5 | 4.8 | 6.7 |
| A. | 8.1 | B. | 8.2 | C. | 8.3 | D. | 8.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{14}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({8+2\sqrt{5}})π$ | B. | $({9+2\sqrt{5}})π$ | C. | $({10+2\sqrt{5}})π$ | D. | $({8+2\sqrt{3}})π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{2}{e^3}})$ | B. | $({\frac{3}{e^3},\frac{2}{e^2}})$ | C. | $({\frac{2}{e^3},\frac{1}{e^2}})$ | D. | $[{\frac{2}{e^3},\frac{1}{e^2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 6 | D. | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com