| A. | $\frac{3}{2}$ | B. | $\frac{4}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
分析 利用正弦定理化简已知等式,结合sinA≠0,sinB≠0,可得cosA=$\frac{3}{4}$,又c=2b,利用余弦定理即可计算得解的答案.
解答 解:由2bsin2A=3asinB,利用正弦定理可得:4sinBsinAcosA=3sinAsinB,
由于:sinA≠0,sinB≠0,
可得:cosA=$\frac{3}{4}$,
又c=2b,
可得:a2=b2+c2-2bccosA=b2+4b2-2b•2b•$\frac{3}{4}$=2b2,
则$\frac{a}{b}$=$\sqrt{2}$.
故选:C.
点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $(-∞,\frac{5}{2}]$ | B. | (2,4) | C. | $(\frac{5}{2},4)$ | D. | (1,$\frac{5}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 气温(℃) | 18 | 13 | 10 | -1 |
| 杯数 | 24 | 34 | 38 | 64 |
| A. | 70 | B. | 50 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{9}{4}$,-2] | B. | [-1,0] | C. | (-∞,-2] | D. | (-$\frac{9}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,2x0+1>0 | B. | ?x∈R,2x+1>0 | C. | ?x0∈R,2x0+1≤0 | D. | ?x∈R,2x+1≥0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com