精英家教网 > 高中数学 > 题目详情
6.设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为(0,$\sqrt{3}$),F1,F2分别是椭圆的左、右焦点,离心率e=$\frac{1}{2}$,过椭圆右焦点F2的直线l与椭圆C交于M,N两点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,若存在,求出直线l的方程;若不存在,说明理由.

分析 (1)椭圆的顶点为(0,$\sqrt{3}$),即b=$\sqrt{3}$,椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$,a=2,即可求得椭圆C的方程;
(2)由题意可知:当直线斜率不存在时,经检验不合题意,当直线斜率存在时,设存在直线l为y=k(x-1),代入椭圆方程,由韦达定理及向量数量积的坐标运算,求得$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{-5{k}^{2}-12}{3+4{k}^{2}}$,由$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,代入即可求得k的值,求得直线l的方程.

解答 解:(1)椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,椭圆的顶点为(0,$\sqrt{3}$),即b=$\sqrt{3}$,
椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$,解得:a=2,
∴椭圆的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;--------(4分)
(2)由题可知,直线l与椭圆必相交.
①当直线斜率不存在时,经检验不合题意.--------(5分)
②当直线斜率存在时,设存在直线l为y=k(x-1),且M(x1,y1),N(x2,y2).
由$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2-8k2x+4k2-12=0,----------(7分)
∴x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
y1•y2=[k(x1-1)][k(x2-1)]=k2[x1•x2-(x1+x2)+1]
$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1•x2+y1•y2=x1•x2+k2[x1•x2-(x1+x2)+1],
=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$+k2($\frac{4{k}^{2}-12}{3+4{k}^{2}}$-$\frac{8{k}^{2}}{3+4{k}^{2}}$+1),
=$\frac{-5{k}^{2}-12}{3+4{k}^{2}}$,
由$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,即$\frac{-5{k}^{2}-12}{3+4{k}^{2}}$=-2,
解得:k=±$\sqrt{2}$,----------(10分)
故直线l的方程为y=$\sqrt{2}$(x-1)或y=-$\sqrt{2}$(x-1),
即$\sqrt{2}$x-y-$\sqrt{2}$=0或$\sqrt{2}$x+y-$\sqrt{2}$=0.----------(12分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}a{x^2}$+2x-lnx.
(1)若a=-$\frac{3}{4}$,判断函数f(x)的单调性;
(2)若函数f(x)在定义域内单调递减,求实数a的取值范围;
(3)当a=-$\frac{1}{2}$时,关于x的方程f(x)=$\frac{1}{2}$x-b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知曲线y=$\frac{x^2}{4}$-lnx的一条切线的斜率为$\frac{1}{2}$,则切点的横坐标为(  )
A.3B.2C.2,-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2-cosx,对于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下条件:
①x1>x2;②x12>x22;③|x1|>x2;④x1+x2<0;⑤x1>|x2|.
其中能使f(x1)>f(x2)恒成立的条件序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={1,a,b},B={a,a2,ab},若A=B,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0)f(x)=Asin(ωx+φ)的部分图象如图所示,下列说法正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点$({-\frac{5π}{12},0})$对称
C.将函数f(x)的图象向左平移$\frac{π}{6}$个单位得到的函数图象关于y轴对称
D.函数f(x)的单调递增区间是$[{kπ+\frac{7π}{12},kπ+\frac{13π}{12}}],k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若$\frac{cos2α}{{cos(α-\frac{π}{4})}}=-\frac{1}{2},则sinα-cosα$等于(  )
A.$-\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点P(1,3),点Q(-1,2),点M为直线x-y+1=0上一动点,则|PM|+|QM|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l:2x+4y+3=0,P为l上的动点,O是坐标原点,若点Q满足:2$\overrightarrow{OQ}=\overrightarrow{QP}$,则点Q的轨迹方程是(  )
A.2x+4y+1=0B.2x+4y+3=0C.2x+4y+2=0D.x+2y+1=0

查看答案和解析>>

同步练习册答案