精英家教网 > 高中数学 > 题目详情
17.已知曲线y=$\frac{x^2}{4}$-lnx的一条切线的斜率为$\frac{1}{2}$,则切点的横坐标为(  )
A.3B.2C.2,-1D.$\frac{1}{2}$

分析 求出原函数的导函数,设出斜率为$\frac{1}{2}$的切线的切点为(x0,y0),(x0>0),由函数在x=x0时的导数等于$\frac{1}{2}$,求出x0的值,舍掉定义域外的x0得答案.

解答 解:由y=$\frac{x^2}{4}$-lnx得y′=$\frac{1}{2}$x-$\frac{1}{x}$,
设斜率为$\frac{1}{2}$的切线的切点为(x0,y0),(x0>0)
则$\frac{1}{2}$x0-$\frac{1}{{x}_{0}}$=$\frac{1}{2}$,
解得:x0=2,
故选:B.

点评 本题考查了利用导数求曲线上过某点切线方程的斜率,考查了基本初等函数的导数公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在150米高的山顶上,测得山下一塔的塔顶与塔底的俯角分别为30°,60°x=0,则塔高为(  )
A.50米B.75米C.100米D.125米

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,则其表面积 为8π+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知cos$\frac{4π}{5}cos\frac{7π}{15}-sin\frac{9π}{5}$sin$\frac{7π}{15}$=cos(x+$\frac{π}{2}$)cosx+$\frac{2}{3}$,则sin2x等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}$=1上一点P到一个焦点的距离是10,那么点P到另一个焦点的距离是2或8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列几何体的截面图不可能是四边形的是(  )
A.圆柱B.圆锥C.圆台D.棱台

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆C:(x-6)2+(y-8)2=1和两点A(0,m),B(0,-m)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最小值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为(0,$\sqrt{3}$),F1,F2分别是椭圆的左、右焦点,离心率e=$\frac{1}{2}$,过椭圆右焦点F2的直线l与椭圆C交于M,N两点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个抛物线型的拱桥,当水面离拱顶2 米时,水面宽4 米,若水面上升1米,则水面的宽度是2$\sqrt{2}$ 米.

查看答案和解析>>

同步练习册答案