分析 由三视图知该几何体是组合体:上面是半球,下面一个圆柱挖掉了$\frac{1}{3}$个半圆柱,由三视图求出几何元素的长度,由柱体、球体的表面积公式求出各个面的面积,加起来求出几何体的表面积.
解答 解:根据三视图可知几何体是组合体:上面是半球,下面一个圆柱挖掉了$\frac{1}{3}$个半圆柱,
球的半径是1,
圆柱的底面圆半径是1,母线长是3,
∴几何体的表面积S=$\frac{1}{2}×4π×{1}^{2}$+π×1×3+π×1×2+π×12+2×1=8π+2,
故答案为8π+2.
点评 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 2,-1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{2}}}{4}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com