精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}满足:a1=2且a22=a1a5
(1)求数列{an}的通项公式;
(2)记Sn为数列{a2n-1}的前n项和,求Sn

分析 (1)设等差数列{an}的公差为d,由题意和等差数列的通项公式列出方程,求出d的值,由等差数列的通项公式分别求出an
(2)由(1)和等差数列的前n项和公式,分别求出 a2n-1和Sn

解答 解:(1)设等差数列{an}的公差为d,
∵a1=2且a22=a1a5,∴(2+d)2=2(2+4d),
化简得:d2-4d=0,解得d=0或d=4.
当d=0时,an=2;
当d=4时,an=2+(n-1)•4=4n-2,
∴an=2或an=4n-2.-------6分
(2)由(1)得,
当an=2时,a2n-1=2,则Sn=2n,--------9分
当an=4n-2时,a2n-1=8n-6,
Sn=$\frac{n(2+8n-6)}{2}$=4n2-2n----12分.

点评 本题考查了等差数列的通项公式,以及等差数列的前n项和公式应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知点O是锐角△ABC的外心,a,b,c分别为内角A、B、C的对边,A=$\frac{π}{4}$,且$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=λ$\overrightarrow{OA}$,则λ的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=cos(2x+$\frac{π}{6}$)的图象向右平移φ(φ>0)个单位后所得的函数为奇函数,则φ的最小值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则(∁UA)∩B=(  )
A.{2,4}B.{ 3 }C.{2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为(  )
A.(-∞,-1)∪(0,1)B.(-2,-1)∪(1,2)C.(-1,0)∪(1,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x与y之间的几组数据如表:
x 345 6
y2.5344.5
假设根据上表数据所得线性回归方程为$\widehat{y}$=$\widehat{b}$x+<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>a^$\widehat{a}$,根据中间两组数据(4,3)和(5,4)求得的直线方程为y=bx+a,则$\widehat{b}$<b,$\widehat{a}$>a.(填“>”或“<”)
附:回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在150米高的山顶上,测得山下一塔的塔顶与塔底的俯角分别为30°,60°x=0,则塔高为(  )
A.50米B.75米C.100米D.125米

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,则其表面积 为8π+2.

查看答案和解析>>

同步练习册答案