精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=-$\frac{\sqrt{3}}{2}$.

分析 先求出f(3$\sqrt{3}$)=-$\frac{4}{3}$,从而$f[{f({3\sqrt{3}})}]$=f(-$\frac{4}{3}$),由此能求出结果.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,
∴f(3$\sqrt{3}$)=$\frac{1}{6}-lo{g}_{3}3\sqrt{3}$=$\frac{1}{6}-\frac{3}{2}$=-$\frac{4}{3}$,
$f[{f({3\sqrt{3}})}]$=f(-$\frac{4}{3}$)=sin([$\frac{π}{2}×(-\frac{4}{3})$]=-sin$\frac{2π}{3}$=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$.
故答案为:$-\frac{{\sqrt{3}}}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则(∁UA)∩B=(  )
A.{2,4}B.{ 3 }C.{2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,一块均匀的正三角形面的钢板的质量为10$\sqrt{6}$kg,在它的顶点处分别受力F1,F2,F3,每个力同它相邻的三角形的两边之间的角都是60°,且|F1|=|F2|=|F3|.要提起这块钢板,|F1|,|F2|,|F3|均要大于xkg,则x的最小值为$\frac{20\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题正确的是(  )
A.若x≠kπ,k∈Z,则 sin2x+$\frac{2}{si{n}^{2}x}$≥2$\sqrt{2}$B.若a<0,则a+$\frac{4}{a}$≥-4
C.若a>0,b>0,则lga+lgb$≥2\sqrt{lga•lgb}$D.若a<0,b<0,则$\frac{a}{b}+\frac{b}{a}≥2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=sin(ωx+φ)(其中ω>0且|φ|≤$\frac{π}{2}$)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,则其表面积 为8π+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)为R上的偶函数,且当0<x<10时,f(x)=lnx,则f(-e)+f(e2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}$=1上一点P到一个焦点的距离是10,那么点P到另一个焦点的距离是2或8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,a1=2,公差为d,则“d=4”是“a1,a2,a5成等比数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案