精英家教网 > 高中数学 > 题目详情
14.如图,一块均匀的正三角形面的钢板的质量为10$\sqrt{6}$kg,在它的顶点处分别受力F1,F2,F3,每个力同它相邻的三角形的两边之间的角都是60°,且|F1|=|F2|=|F3|.要提起这块钢板,|F1|,|F2|,|F3|均要大于xkg,则x的最小值为$\frac{20\sqrt{2}}{3}$.

分析 由题意可得:3xsin60°≥10$\sqrt{6}$,解出即可得出.

解答 解:由题意可得:3xsin60°≥10$\sqrt{6}$,解得x≥$\frac{20\sqrt{2}}{3}$(kg),
故答案为:$\frac{20\sqrt{2}}{3}$.

点评 本题考查了向量与力的正交分解,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧棱PA⊥底面ABCD,且PA=2,Q是PA的中点.
(1)证明:PC∥平面BDQ;
(2)求点A到面BDQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(sinx,cosx+1)
(I)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求所有满足条件的向量$\overrightarrow{a}$、$\overrightarrow{b}$的坐标;
(II)若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函数f(x)的最大值及取得最大值时的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线l∥平面α,直线a?α,则l与a的位置关系是(  )
A.l∥aB.l与a异面C.l与a相交D.l与a没有公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=2px(p>0)与直线l:x-y+1=0相切于点M.
(1)求抛物线C的方程;
(2)作直线l'与OM平行(O为原点)且与抛物线C交于A,B两点,又与直线l交于点P,是否存在常数λ,使得|PM|2=λ|PA||PB|成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等比数列{an}中,若an>0,a7=2,则$\frac{1}{a_3}+\frac{2}{{{a_{11}}}}$的最小值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知表面积为4π的球有一内接四棱锥S-ABCD,ABCD是边长为1的正方形,且SA⊥面ABCD,则四棱锥S-ABCD的体积为$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正四棱锥底面正方形的边长为4,高与斜高的夹角为30°,则该四棱锥的侧面积为(  )
A.32B.64C.$16\sqrt{7}$D.$16\sqrt{3}$

查看答案和解析>>

同步练习册答案