精英家教网 > 高中数学 > 题目详情
9.已知抛物线C:y2=2px(p>0)与直线l:x-y+1=0相切于点M.
(1)求抛物线C的方程;
(2)作直线l'与OM平行(O为原点)且与抛物线C交于A,B两点,又与直线l交于点P,是否存在常数λ,使得|PM|2=λ|PA||PB|成立?若存在,求出的值;若不存在,请说明理由.

分析 (1)由题意可知:将直线y=x+1代入抛物线方程,由△=0,即可求得p的值,求得抛物线C的方程;
(2)假设存在常数λ,使得|PM|2=λ|PA||PB|成立,由(1)求得M坐标,|PM|2=2m2,求得直线的斜率,设直线方程为y=2x+m(m≠0),代入抛物线方程,由韦达定理及向量数量积的坐标表示可知:丨PA丨丨PB丨=$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\frac{5}{4}$m2,则2m2=$\frac{5}{4}$m2λ,即可求得常数λ.

解答 解:(1)由题意可知:$\left\{\begin{array}{l}{y=x+1}\\{{y}^{2}=2px}\end{array}\right.$,整理得:x2+2(1-p)x+1=0,
由抛物线C:y2=2px(p>0)与直线l:x-y+1=0相切,
∴△=0,即4(1-p)2-4=0,解得:p=2或p=0(舍去),
∴抛物线方程为:y2=4x;
(2)假设存在常数λ,使得|PM|2=λ|PA||PB|成立,
由(1)可知:M(1,2),则kOM=2,
设直线l′方程为y=2x+m(m≠0),
A(x1,y1),B(x2,y2),
则P(1-m,2-m),|PM|2=2m2
则$\left\{\begin{array}{l}{y=2x+m}\\{{y}^{2}=4x}\end{array}\right.$,整理得:4x2+4(m-1)x+m2=0,
由△>0,即16(m-1)2-16m2>0,解得:m<$\frac{1}{2}$且m≠0,
由韦达定理可知:x1+x2=1-m,x1•x2=$\frac{{m}^{2}}{4}$,
由丨PA丨丨PB丨=$\overrightarrow{PA}$•$\overrightarrow{PB}$=5[x1•x2+(m-1)(x1+x2)+(m-1)2]=$\frac{5}{4}$m2
整理得:2m2=$\frac{5}{4}$m2λ,解得:λ=$\frac{8}{5}$,
∴存在常数λ=$\frac{8}{5}$,使得|PM|2=λ|PA||PB|成立.

点评 本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知f(x)是偶函数,它在(0,+∞)上是减函数,若f(lgx)>f(1),则x的取值范围是(  )
A.($\frac{1}{10}$,1)B.(0,$\frac{1}{10}$)∪(1,+∞)C.($\frac{1}{10}$,10)D.(0,1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在锐角△ABC中,若sinA=$\frac{3}{5}$,AB=5,AC=6,则BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{3}{5}t\\ y=-1+\frac{4}{5}t\end{array}$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=$\sqrt{2}sin(θ+\frac{π}{4})$.
(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.化简$\frac{sin(α+π)cos(π-α)sin(\frac{5π}{2}-α)}{tan(-α)co{s}^{3}(-α-2π)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,一块均匀的正三角形面的钢板的质量为10$\sqrt{6}$kg,在它的顶点处分别受力F1,F2,F3,每个力同它相邻的三角形的两边之间的角都是60°,且|F1|=|F2|=|F3|.要提起这块钢板,|F1|,|F2|,|F3|均要大于xkg,则x的最小值为$\frac{20\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x∈N|1<x<7},N={x|$\frac{x}{3}$∉N},则M∩N等于(  )
A.{3,6}B.{4,5}C.{2,4,5}D.{2,4,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=sin(ωx+φ)(其中ω>0且|φ|≤$\frac{π}{2}$)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=xex的导函数y′=(  )
A.xexB.exC.(x+1)exD.1+ex

查看答案和解析>>

同步练习册答案