精英家教网 > 高中数学 > 题目详情
18.函数f(x)=sin(ωx+φ)(其中ω>0且|φ|≤$\frac{π}{2}$)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{3}$个单位长度

分析 由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式,再根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 结:由函数f(x)=sin(ωx+φ)(其中ω>0且|φ|≤$\frac{π}{2}$)的图象,可得 $\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,∴ω=2,
再根据五点法作图可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,∴f(x)=sin(2x+$\frac{π}{3}$).
故把y=f(x)的图象上所有点向右平移$\frac{π}{6}$个单位,可得y=sin2x的图象,
故选:A.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,再根据函数y=Asin(ωx+φ)的图象变换规律,得出结论,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是(  )
A.0.62B.0.68C.0.02D.0.38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=2px(p>0)与直线l:x-y+1=0相切于点M.
(1)求抛物线C的方程;
(2)作直线l'与OM平行(O为原点)且与抛物线C交于A,B两点,又与直线l交于点P,是否存在常数λ,使得|PM|2=λ|PA||PB|成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知表面积为4π的球有一内接四棱锥S-ABCD,ABCD是边长为1的正方形,且SA⊥面ABCD,则四棱锥S-ABCD的体积为$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某四棱锥的三视图如图所示,则该四棱锥的外接球的表面积是(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}的前n项和为Sn,且满足点(n,$\frac{{S}_{n}}{n}$)均在函数f(x)=40-x上.
(1)求数列{an}的通项公式;
(2)n为何值时,Sn的值最大,并求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,a1=3,公比$q=\sqrt{2}$,则a7等于(  )
A.12B.15C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinx=x-$\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+…{({-1})^{n-1}}\frac{{{x^{2n-1}}}}{{({2n-1})!}}$+…,由sinx=0有无穷多个根;0,±π,±2π,±3π,…,可得:$sinx=x({1-\frac{x^2}{π^2}})({1-\frac{x^2}{{4{π^2}}}})({1-\frac{x^2}{{9{π^2}}}})…$,把这个式子的右边展开,发现-x3的系统为$\frac{1}{π^2}+\frac{1}{{{{({2π})}^2}}}+\frac{1}{{{{({3π})}^2}}}+…=\frac{1}{3!}$,即$\frac{1}{1^2}+\frac{1}{{{{(2)}^2}}}+\frac{1}{{{{(3)}^2}}}+…=\frac{π^2}{6}$,请由cosx=1-$\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+…+{({-1})^{n-1}}\frac{{{x^{2({n-1})}}}}{{2({n-1})!}}$+…出现,类比上述思路与方法,可写出类似的一个结论$\frac{1}{{1}^{2}}$+$\frac{1}{{3}^{2}}$+…=$\frac{{π}^{2}}{8}$.

查看答案和解析>>

同步练习册答案