精英家教网 > 高中数学 > 题目详情
20.如图,C是⊙O的直径AB上一点,CD⊥AB,与⊙O相交于点D,与弦AF交于点E,与BF的延长线交于点G,GT与⊙O相切于点T.
(Ⅰ)证明:CE•CG=CD2
(Ⅱ)若AC=CO=1,CD=3CE,求GT.

分析 (Ⅰ)延长DC与圆O交于点M,利用相交弦定理,结合Rt△ACE∽Rt△GBC,证明:CE•CG=CD2
(Ⅱ)若AC=CO=1,CD=3CE,求得CG=3CD,利用切割线定理求GT.

解答 (Ⅰ)证明:延长DC与圆O交于点M,
因为CD⊥AB,
所以CD2=CD•CM=AC•BC,
因为Rt△ACE∽Rt△GBC,所以$\frac{AC}{CE}$=$\frac{CG}{BC}$,
即AC•BC=CE•CG,故CD2=CE•CG.…(5分)
(Ⅱ)解:因为AC=CO=1,所以CD2=AC•BC=3,
又CD=3CE,由(Ⅰ)得CG=3CD,
GT2=GM•GD=(CG+CM)•(CG-CD)=(CG+CD)•(CG-CD)
=CG2-CD2=8CD2=24,故GT=2$\sqrt{6}$.…(10分)

点评 本题考查相交弦定理、切割线定理,考查三角形相似的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知复数z1=2+i,z2=m+i,若z1•z2是纯虚数,则m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.运行如下程序框图,如果输入的x∈(-∞,1],则输出的y属于(  )
A.[-$\frac{1}{e}$,0]B.[-$\frac{1}{e}$,0)C.[-$\frac{1}{e}$,+∞)D.[-$\frac{1}{e}$,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=lnx-$\frac{1}{2}a{x^2}+x({a>-\frac{1}{4}})$.
(Ⅰ)若函数f(x)在点(1,f(1))处的切线与直线y=x平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a=0,m>0时,方程2mf(x)=x2有唯一实数解,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(2sinx,-cosx),$\overrightarrow{b}$=($\sqrt{3}$cosx,2cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+1
(I)求函数f(x)的最小正周期,并求当$x∈[{\frac{π}{12},\frac{2π}{3}}]$时f(x)的取值范围;
(Ⅱ)将函数f(x)的图象向左平移$\frac{π}{3}$个单位,得到函数g(x)的图象.在△ABC中,角A,B,C的对边分别为a,b,c,若g$({\frac{A}{2}})$=1,a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正数列{an}的前n项和Sn满足:rSn=anan+1-1,a1=a>0,常数r∈N.
(Ⅰ)求证:an+2-an为定值;
(Ⅱ)若数列{an}是一个周期数列(即存在非零常数T,使an+T=an恒成立),求该数列的最小正周期;
(Ⅲ)若数列{an}是一个各项为有理数的等差数列,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有排列成一行的四户人家.已知:小王家在小李家的隔壁,小王家与小张家并不相邻.如果小张家与小赵家也不相邻,那么,小赵家的隔壁是小王家.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在自然数列1,2,3,…,n中,任取k个元素位置保持不动,将其余n-k个元素变动位置,得到不同的新数列.由此产生的不同新数列的个数记为Pn(k).
(1)求P3(1)
(2)求$\sum_{k=0}^{4}$P4(k);
(3)证明$\sum_{k=0}^{n}$kPn(k)=n$\sum_{k=0}^{n-1}$Pn-1(k),并求出$\sum_{k=0}^{n}$kPn(k)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=(1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…-$\frac{{{x^{2012}}}}{2012}$+$\frac{{{x^{2013}}}}{2013}$-$\frac{{{x^{2014}}}}{2014}$+$\frac{{{x^{2015}}}}{2015}}$)cos2x在区间[-3,3]上零点的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案