精英家教网 > 高中数学 > 题目详情
12.有排列成一行的四户人家.已知:小王家在小李家的隔壁,小王家与小张家并不相邻.如果小张家与小赵家也不相邻,那么,小赵家的隔壁是小王家.

分析 根据四户人家之间的关系进行推理即可.

解答 解:先固定小王家,
∵小王家在小李家的隔壁,
∴他们的位置关系为:小王,小李,
∵小王家与小张家并不相邻,
∴此时的位置关系为:小王,小李,小张,
如果小张家与小赵家也不相邻,则此时的位置关系为:小赵,小王,小李,小张,
故小赵家的隔壁是小王家,
故答案为:小王

点评 本题主要考查推理和证明的应用,根据条件关系进行推理是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在区域$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤1\end{array}\right.$内任意取一点P(x,y),则x2+y2>1的概率是(  )
A.$\frac{2π-4}{4}$B.$\frac{π-2}{4}$C.$\frac{π}{4}$D.$\frac{4-π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{cos(x-\frac{π}{2}),x∈[0,π]}\\{lo{g}_{2015}\frac{x}{π},x∈(π,+∞)}\end{array}\right.$,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为(2π,2016π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,C是⊙O的直径AB上一点,CD⊥AB,与⊙O相交于点D,与弦AF交于点E,与BF的延长线交于点G,GT与⊙O相切于点T.
(Ⅰ)证明:CE•CG=CD2
(Ⅱ)若AC=CO=1,CD=3CE,求GT.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(m,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m等于(  )
A.$\sqrt{2}$B.$\sqrt{2}$或$-\sqrt{2}$C.$-\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将5个全等的正方形按如图所示方式放置在一个的矩形OEFG内,其中顶点P、C、Q、D分别在矩形的四条边上.
(1)设向量$\overrightarrow{PA}$=a,$\overrightarrow{PB}$=b,以向量a,b为基底,则向量$\overrightarrow{CD}$=3b-2a(用向量a,b表示);
(2)若OE=7,OG=8,则图中5个正方形的边长都为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an}的前n项和为Sn,若S13=78,则a2+a5+a9+a12=24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m,n是两条不同的直线,α,β,γ为三个不同的平面,则下列命题中错误的是(  )
A.若m⊥α,m⊥β,则α∥βB.若m⊥α,n⊥α,则m∥nC.若α∥γ,β∥γ,则α∥βD.若α⊥γ,β⊥γ,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{{e}^{x}}{x+1}$(x>-1).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)求证:($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$(n∈N

查看答案和解析>>

同步练习册答案