精英家教网 > 高中数学 > 题目详情
11.运行如下程序框图,如果输入的x∈(-∞,1],则输出的y属于(  )
A.[-$\frac{1}{e}$,0]B.[-$\frac{1}{e}$,0)C.[-$\frac{1}{e}$,+∞)D.[-$\frac{1}{e}$,e)

分析 根据题意,模拟程序框图的运行过程,即可得出正确的答案.

解答 解:模拟程序框图的运行过程,知该程序运行的结果是输出函数y=$\left\{\begin{array}{l}{xlnx}&{x>0}\\{x{e}^{x}}&{x≤0}\end{array}\right.$;
当x∈(-∞,0]时,y=xex∈[-$\frac{1}{e}$,0];
当x∈(0,1]时,y=xlnx∈[-$\frac{1}{e}$,0];
∴输出的y∈[-$\frac{1}{e}$,0].
故选:A.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的答案,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,A1A⊥底面ABC,AB⊥AC,E分别是A1B1,CC1的中点.
(Ⅰ)用基向量$\overrightarrow{A{A}_{1}}$,$\overrightarrow{A{B}_{1}}$,$\overrightarrow{A{C}_{1}}$表示向量$\overrightarrow{DE}$;
(Ⅱ)若AB=AC=AA1=1,求直线DE与平面AB1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区域$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤1\end{array}\right.$内任意取一点P(x,y),则x2+y2>1的概率是(  )
A.$\frac{2π-4}{4}$B.$\frac{π-2}{4}$C.$\frac{π}{4}$D.$\frac{4-π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示,程序框图的输出结果是(  )
A.$\frac{1}{16}$B.$\frac{25}{24}$C.$\frac{11}{12}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2,AD=$\sqrt{2}$,PD⊥平面ABCD,E,F分别为CD,PB的中点.求证:
(1)CF∥平面PAE;
(2)AE⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的内角A、B、C所对的边分别为a、b、c,且a+b=6,c=2,cosC=$\frac{7}{9}$.
(Ⅰ)求a、b的值;
(Ⅱ)求sin(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{cos(x-\frac{π}{2}),x∈[0,π]}\\{lo{g}_{2015}\frac{x}{π},x∈(π,+∞)}\end{array}\right.$,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为(2π,2016π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,C是⊙O的直径AB上一点,CD⊥AB,与⊙O相交于点D,与弦AF交于点E,与BF的延长线交于点G,GT与⊙O相切于点T.
(Ⅰ)证明:CE•CG=CD2
(Ⅱ)若AC=CO=1,CD=3CE,求GT.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m,n是两条不同的直线,α,β,γ为三个不同的平面,则下列命题中错误的是(  )
A.若m⊥α,m⊥β,则α∥βB.若m⊥α,n⊥α,则m∥nC.若α∥γ,β∥γ,则α∥βD.若α⊥γ,β⊥γ,则α∥β

查看答案和解析>>

同步练习册答案