分析 (1)根据线面平行的判定定理即可证明CF∥平面PAE;
(2)根据线面垂直的判定定理即可在证明AE⊥平面PBD.
解答
证明:(1)取AB的中点N,连接FN,EN,
在△PAB中,FN为中位线,
∴FN∥AB,FN=$\frac{1}{2}$AB,
∵$CE=\frac{1}{2}AB$,CE∥AB,
∴CE∥FN,CE=FN,
∴四边形CENF为平行四边形,
∴CF∥EN,
∵EN?面PAE,CF?面PAE,
∴CF∥平面PAE;
(2)∵PD⊥平面ABCD,AE?平面ABCD,
∴PD⊥AE.
设AE∩BD=M,∵E为CD的中点,
∴$\frac{DE}{AB}=\frac{DM}{BM}=\frac{EM}{AM}=\frac{1}{2}$,
则△DME∽△AMB,
在矩形ABCD中,AE=$\sqrt{3}$,BD=$\sqrt{6}$,
∴DM2+EM2=$(\frac{\sqrt{3}}{3})^{2}+(\frac{\sqrt{6}}{3})^{2}=1=D{E}^{2}$,
即△DME为直角三角形,即AE⊥BD,
∵PD∩BD=D,PD?面PBD,BD?面PBD,
∴AE⊥平面PBD.
点评 本题主要考查空间线面平行和线面垂直的判定,根据相应的判定定理是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\frac{3}{2}$) | B. | (1,$\frac{3}{2}$)∪($\frac{3}{2}$,3) | C. | (2,3) | D. | ($\frac{3}{2}$,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{e}$,0] | B. | [-$\frac{1}{e}$,0) | C. | [-$\frac{1}{e}$,+∞) | D. | [-$\frac{1}{e}$,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com