精英家教网 > 高中数学 > 题目详情
16.定义运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,已知函数f(x)=$|\begin{array}{l}{sinx}&{-1}\\{1}&{cosx}\end{array}|$,则函数f(x)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

分析 由运算定义及二倍角的正弦函数公式可求f(x),根据三角函数的周期性及其求法即可得解.

解答 解:由题意可得:f(x)=$|\begin{array}{l}{sinx}&{-1}\\{1}&{cosx}\end{array}|$=sinxcosx+1=$\frac{1}{2}$sin2x+1,
从而可得:函数f(x)的最小正周期T=$\frac{2π}{2}$=π.
故选:B.

点评 本题主要考查了二倍角的正弦函数公式,三角函数的周期性及其求法,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在△ABC中,AB=AC,D在线段AC上,且AC=$\sqrt{2}$AD,BD=1.
(Ⅰ)若A=$\frac{π}{2}$,求sin∠DBC的值;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点F是抛物线T:x2=2py(y>0)的焦点,F1是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,若线段FF1的中点P恰为抛物线T与双曲线C的渐近线在第一象限内的交点,则双曲线C的离心率e=$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{2\sqrt{2}}}{3}$,长轴长为6.
(I)求椭圆C的方程;
(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.
(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;
(ii)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),其右顶点为 A(2,0),上、下顶点分别为 B1,B2.直线 A B2的斜率为$\frac{1}{2}$,过椭圆的右焦点F的直线交椭圆于 M,N两点( M,N均在y轴右侧).
(Ⅰ)求椭圆的方程;
(Ⅱ)设四边形 M N B1 B2面积为S,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,A1A⊥底面ABC,AB⊥AC,E分别是A1B1,CC1的中点.
(Ⅰ)用基向量$\overrightarrow{A{A}_{1}}$,$\overrightarrow{A{B}_{1}}$,$\overrightarrow{A{C}_{1}}$表示向量$\overrightarrow{DE}$;
(Ⅱ)若AB=AC=AA1=1,求直线DE与平面AB1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆M:x2+y2+x-6y+m=0
(Ⅰ)当m=$\frac{1}{4}$,过N(-$\frac{3}{2}$,-1)的直线a与圆的相交所得的弦长为4$\sqrt{2}$,求直线a的方程;
(Ⅱ)设直线l:x+2y-3=0与圆M交于P,Q两点,且与PQ为直径的圆恰好经过原点O,求m的值;
(Ⅲ)当m=$\frac{1}{4}$时,直线4x-3y-12=0与x,y轴分别交于A,B两点,在圆M上是否存在点C,使得△ABC的面积为$\frac{23}{2}$,若存在,请指出点C的个数,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{sin2x-cos2x+1}{2sinx}$.
(1)求函数f(x)的定义域;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2,AD=$\sqrt{2}$,PD⊥平面ABCD,E,F分别为CD,PB的中点.求证:
(1)CF∥平面PAE;
(2)AE⊥平面PBD.

查看答案和解析>>

同步练习册答案