分析 求得椭圆的焦点为(±5,0),设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),运用a,b,c的关系和离心率公式,解方程可得a=3,b=4,进而得到双曲线的方程.
解答 解:椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$的焦点为(±5,0),
设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
可得c=5,即a2+b2=25,
又e=$\frac{c}{a}$=$\frac{5}{3}$,
解得a=3,b=4,
即有双曲线的方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.
点评 本题考查双曲线的方程和性质,主要考查待定系数法求方程,同时考查离心率公式的运用,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\sqrt{2},+∞)$ | B. | [2,+∞) | C. | $({1,\sqrt{2}}]$ | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±4x | B. | y=±2x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{1}{4}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com