| A. | $[\sqrt{2},+∞)$ | B. | [2,+∞) | C. | $({1,\sqrt{2}}]$ | D. | (1,2] |
分析 求得双曲线的渐近线方程,可得圆心(0,2)到渐近线的距离d≥r,由点到直线的距离公式可得a的范围,再由离心率公式计算即可得到所求范围.
解答 解:双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线设为y=$\frac{x}{a}$,
由渐近线与圆x2+(y-2)2=2至多有一个交点,可得:
圆心(0,2)到渐近线的距离d≥r,
即有$\frac{|2a|}{\sqrt{1+{a}^{2}}}$≥$\sqrt{2}$,
解得a≥1,
则离心率e=$\frac{c}{a}$=$\frac{\sqrt{1+{a}^{2}}}{a}$=$\sqrt{1+\frac{1}{{a}^{2}}}$∈(1,$\sqrt{2}$].
故选:C.
点评 本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | -6 | C. | 36 | D. | -36 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com