分析 根据已知条件,作出图形,MN的中点连接双曲线的两个焦点,便会得到三角形的中位线,根据中位线的性质及双曲线上的点到两焦点的距离之差的绝对值为2a,即可求出||AN|-|BN||.
解答
解:双曲线C:$\frac{x^2}{9}-\frac{y^2}{4}$=1的a=3,
设双曲线C的左右焦点分别为F1,F2,如图,
连接PF1,PF2,
∵F1是MA的中点,P是MN的中点,
∴F1P是△MAN的中位线,
∴|PF1|=$\frac{1}{2}$|AN|,
同理|PF2|=$\frac{1}{2}$|BN|,
∴||AN|-|BN||=2||PF1|-|PF2||,
∵P在双曲线上,
根据双曲线的定义知:
||PF1|-|PF2||=2a=6,
∴||AN|-|BN||=12.
故答案为:12.
点评 本题考查双曲线的定义、方程和性质,同时考查三角形的中位线,运用定义法是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | $\frac{{\sqrt{13}}}{2}$ | D. | $\frac{{\sqrt{13}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com