精英家教网 > 高中数学 > 题目详情
3.已知双曲线C:$\frac{x^2}{9}-\frac{y^2}{4}$=1,点M与曲线C的焦点不重合,若点M关于曲线C的两个焦点的对称点分别为A,B,M,N是坐标平面内的两点,且线段MN的中点P恰好在双曲线C上,则|AN-BN|=12.

分析 根据已知条件,作出图形,MN的中点连接双曲线的两个焦点,便会得到三角形的中位线,根据中位线的性质及双曲线上的点到两焦点的距离之差的绝对值为2a,即可求出||AN|-|BN||.

解答 解:双曲线C:$\frac{x^2}{9}-\frac{y^2}{4}$=1的a=3,
设双曲线C的左右焦点分别为F1,F2,如图,
连接PF1,PF2
∵F1是MA的中点,P是MN的中点,
∴F1P是△MAN的中位线,
∴|PF1|=$\frac{1}{2}$|AN|,
同理|PF2|=$\frac{1}{2}$|BN|,
∴||AN|-|BN||=2||PF1|-|PF2||,
∵P在双曲线上,
根据双曲线的定义知:
||PF1|-|PF2||=2a=6,
∴||AN|-|BN||=12.
故答案为:12.

点评 本题考查双曲线的定义、方程和性质,同时考查三角形的中位线,运用定义法是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.试判断命题“设a,x∈R,若关于x的不等式x2+(2a+1)x+a2+2≤0有实数解,则a≥1”的逆否命题的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.求方程为$\frac{x^2}{4}-{y^2}=1$的双曲线的顶点坐标是(±2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线C的中心在原点,焦点在x轴上,F1,F2分别是左,右焦点,P是右支上一点,PF2⊥F1F2,OH⊥PF1,垂足为H,若OF1=$\frac{4}{3}$OH,则离心率e=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在三棱台ABC-A1B1C1中,A1B1=2AB,点E、F分别是棱B1C1、A1B1的中点,则在三棱台的各棱所在的直线中,与平面ACEF平行的有A1C1、BB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的离心率为$\sqrt{5}$,虚轴长为4.
(Ⅰ)求双曲线的标准方程;
(Ⅱ)过点(0,1),倾斜角为45°的直线l与双曲线C相交于A、B两点,O为坐标原点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a>b>0})$右焦点作双曲线其中一条渐近线的垂线与两渐近线分别交于A,B两点,O为坐标原点,且△AOB的面积为$\frac{{6{a^2}}}{5}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{\sqrt{13}}}{2}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的斜率为k,k是mn的最小值,其中m,n满足$\frac{1}{m}+\frac{1}{n}=\sqrt{mn}$,且右焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.2$\sqrt{5}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求与椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$有公共焦点,且离心率$e=\frac{5}{3}$的双曲线的方程.

查看答案和解析>>

同步练习册答案