精英家教网 > 高中数学 > 题目详情
8.试判断命题“设a,x∈R,若关于x的不等式x2+(2a+1)x+a2+2≤0有实数解,则a≥1”的逆否命题的真假.

分析 根据原命题与它的逆否命题真假性相同,判断原命题的真假即可.

解答 解:该命题的逆否命题是真命题;
∵关于x的不等式x2+(2a+1)x+a2+2≤0有实数解,
∴△=(2a+1)2-4(a2+2)≥0,
解得a≥$\frac{7}{4}$,
∴a≥1,原命题正确;
∴它的逆否命题也正确.

点评 本题考查了四种命题的应用问题,解题时应根据原命题与它的逆否命题的真假性相同进行解答,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知a>0,b>0,且a+b=1,则($\frac{1}{a}$+2)($\frac{1}{b}$+2)的最小值是16;$\frac{ab}{2{a}^{2}+1}$的最大值是$\frac{\sqrt{3}-1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)是定义在R上的奇函数f(x)=f(x-3),且满足f(-2)=-3,若数列{an}的前n项和Sn满足$\frac{{S}_{n}}{n}=\frac{2{a}_{n}}{n}+1$,则f(a5)+f(a6)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{2+sin2x}{2-2sin2x}$的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.方程cos2x=cosx在[0,2π]内的解集为{0,2π,$\frac{2π}{3}$,$\frac{4π}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,复数z满足(z-2i)(3+i)=10,则z=(  )
A.3-iB.3+iC.-3-iD.-3+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=cosx•cos2x•cos4x,若f(α)=$\frac{1}{8}$,则角α不可能等于(  )
A.$\frac{π}{9}$B.$\frac{2π}{9}$C.$\frac{2π}{7}$D.$\frac{4π}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义“θ1⊕θ2”是将角θ1的终边按照逆时针方向旋转到与角θ2的终边重合所转动的最小正角.则-$\frac{7π}{6}$⊕$\frac{4π}{3}$等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线C:$\frac{x^2}{9}-\frac{y^2}{4}$=1,点M与曲线C的焦点不重合,若点M关于曲线C的两个焦点的对称点分别为A,B,M,N是坐标平面内的两点,且线段MN的中点P恰好在双曲线C上,则|AN-BN|=12.

查看答案和解析>>

同步练习册答案