精英家教网 > 高中数学 > 题目详情
18.已知a>0,b>0,且a+b=1,则($\frac{1}{a}$+2)($\frac{1}{b}$+2)的最小值是16;$\frac{ab}{2{a}^{2}+1}$的最大值是$\frac{\sqrt{3}-1}{4}$.

分析 化简($\frac{1}{a}$+2)($\frac{1}{b}$+2)=($\frac{a+b}{a}$+2)($\frac{a+b}{b}$+2),从而求最小值;化简$\frac{ab}{2{a}^{2}+1}$=$\frac{ab}{2{a}^{2}+(a+b)^{2}}$=$\frac{1}{3\frac{a}{b}+\frac{b}{a}+2}$,从而求最大值.

解答 解:($\frac{1}{a}$+2)($\frac{1}{b}$+2)
=($\frac{a+b}{a}$+2)($\frac{a+b}{b}$+2)
=($\frac{b}{a}$+3)($\frac{a}{b}$+3)
=3($\frac{b}{a}$+$\frac{a}{b}$)+10≥16,
(当且仅当$\frac{b}{a}$=$\frac{a}{b}$,即a=b=$\frac{1}{2}$时,等号成立),
$\frac{ab}{2{a}^{2}+1}$=$\frac{ab}{2{a}^{2}+(a+b)^{2}}$
=$\frac{1}{3\frac{a}{b}+\frac{b}{a}+2}$≤$\frac{1}{2\sqrt{3}+2}$=$\frac{\sqrt{3}-1}{4}$,
(当且仅当3$\frac{a}{b}$=$\frac{b}{a}$,即a=$\frac{\sqrt{3}-1}{2}$,b=$\frac{3-\sqrt{3}}{2}$时,等号成立),
故答案为:16,$\frac{\sqrt{3}-1}{4}$.

点评 本题考查了基本不等式的性质应用,同时考查了学生的化简运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.给出下列命题
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=±$\overrightarrow{b}$
②若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$
③若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$
④若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式-$\frac{1}{2}$x2+3x-5>0的解集是(  )
A.{x|x<-2}B.{x|x>5}C.{x|x>-2或x>5}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(a$\sqrt{x}$-$\frac{1}{\root{3}{x}}$)10展开式的常数项是840,x5的系数是32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在三棱锥S-ABC中,底面△ABC的每个顶点处的三条棱两两所成的角之和均为180°,△ABC的三条边长分别为AB=$\sqrt{3}$,AC=$\sqrt{5}$,BC=$\sqrt{6}$,则三棱锥S-ABC的体积(  )
A.2$\sqrt{2}$B.$\sqrt{10}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(x+2y)n的展开式中第二项的系数为8,则(1+x)+(1+x)2+…(1+x)n展开式中所有项的系数和为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x2+$\frac{a}{x}$在区间(1,+∞)上是增函数,则实数a的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+2cos2x.
(1)求f(x)的最小正周期及最小值;
(2)求使f(x)=3的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.试判断命题“设a,x∈R,若关于x的不等式x2+(2a+1)x+a2+2≤0有实数解,则a≥1”的逆否命题的真假.

查看答案和解析>>

同步练习册答案