精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$(3an-1).数列{bn}为等差数列,b1=a1,b2=a3
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\frac{{4({n^2}+n+1)}}{{b_{n+1}^2-1}}$,求数列{cn}的前n项和Tn

分析 (I)利用递推关系与等比数列的通项公式可得:an.利用等差数列的通项公式可得bn
(II)利用“裂项求和”方法即可得出.

解答 解:(Ⅰ)由${S_n}=\frac{1}{2}(3{a_n}-1)$,得${S_{n-1}}=\frac{1}{2}(3{a_{n-1}}-1)(n≥2)$,
两式相减得:${a_n}=\frac{1}{2}(3{a_n}-3{a_{n-1}})(n≥2)$,
即an=3an-1(n≥2),
由${S_1}=\frac{1}{2}(3{a_1}-1)$,得a1=1.
∴数列{an}是首项为1,公比为3的等比数列,
故${a_n}={3^{n-1}}$.
设等差数列{bn}的公差为d,依题设得,b1=a1,b5=a3
由上式可得1+4d=9,解得d=2,
∴bn=1+2(n-1)=2n-1.
(Ⅱ)由(Ⅰ)知,bn+1=2n+1,
∴${c_n}=\frac{{4({n^2}+n+1)}}{{b_{n+1}^2-1}}=\frac{{4({n^2}+n+1)}}{{{{(2n+1)}^2}-1}}=\frac{{4({n^2}+n+1)}}{{4{n^2}+4n}}=\frac{{{n^2}+n+1}}{{{n^2}+n}}$=$1+\frac{1}{n(n+1)}=1+(\frac{1}{n}-\frac{1}{n+1})$.
∴${T_n}={c_1}+{c_2}+…+{c_n}=[1+(1-\frac{1}{2})]+[1+(\frac{1}{2}-\frac{1}{3})]+…+[1+(\frac{1}{n}-\frac{1}{n+1})]$
=$n+(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})=n+1-\frac{1}{n+1}=\frac{{{n^2}+2n}}{n+1}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若以曲线y=f(x)上的任意一点M(x,y)为切点作切线L,曲线上总存在异于M的点N(x1,y1),使得过点N可以作切线L1,且L∥L1,则称曲线y=f(x)具有“可平行性”.下面有四条曲线:
①y=x3-x  ②y=x+$\frac{1}{x}$  ③y=sinx  ④y=(x-2)2+lnx
其中具有可平行性的曲线为②③.(写出所有满足条件的曲线编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x∈R,且x≠0,“($\frac{1}{2}$)x>1”是“$\frac{1}{x}$<1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{2}{1+i}$(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中既是奇函数,又在区间(0,+∞)上是单调递减的函数为(  )
A.y=$\sqrt{x}$B.y=-x3C.y=${log_{\frac{1}{2}}}$xD.y=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow{b}$=(cosx,m),m∈R
(1)若m=tan$\frac{10π}{3}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,求cos2x-sin2x的值;
(2)将函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$-2m2-1的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,若函数g(x)在[0,$\frac{π}{2}$]上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列说法中正确的有:①③④.(将你认为正确的命题序号全部填在横线上)
①电影院调查观众的某一指标,通知“每排(每排人数相等)座位号为14的观众留下来座谈”是系统抽样;
②推理过程“因为指数函数y=ax是增函数,而y=2x是指数函数,所以y=2x是增函数”中,小前提是错误的;
③对命题“正三角形与其内切圆切于三边中点”可类比猜想:正四面体与其内切球切于各面中心;
④在判断两个变量y与x是否相关时,选择了3个不同的模型,它们的相关指数R2分别为:模型1为0.98,模型2为0.80,模型3为0.50.其中拟合效果最好的是模型1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列结论中,正确的是(  )
A.“x>2”是“x2-2x>0”成立的必要条件
B.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,则“$\overrightarrow{a}$∥$\overrightarrow{b}$”是“$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$”的充要条件
C.命题“p:?x∈R,x2≥0”的否定形式为“¬p:?x0∈R,x02≥0”
D.命题“若x2=1,则x=1”的逆否命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知焦点在y轴上的椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{3}}{2}$,且过点($\frac{\sqrt{2}}{2}$,$\sqrt{2}$),不过椭圆顶点的动直线l:y=kx+m与椭圆C交于A、B两点.求:
(1)椭圆C的标准方程;
(2)求三角形AOB面积的最大值,并求取得最值时直线OA、OB的斜率之积.

查看答案和解析>>

同步练习册答案