精英家教网 > 高中数学 > 题目详情
17.在△ABC中,a,b,c分别是角A,B,C所对的边,且$b=3,a=\sqrt{3},A={30°}$,求c的值.

分析 利用余弦定理列出关系式,将a,b及cosA的值代入得到关于c的方程,求出方程的解即可得到c的值.

解答 解:∵在△ABC中,a=$\sqrt{3}$,b=3,A=30°,
∴由余弦定理得:a2=b2+c2-2bccosA,
即3=9+c2-3$\sqrt{3}$c,
整理得:(c-$\sqrt{3}$)(c-2$\sqrt{3}$)=0,
解得:c=$\sqrt{3}$或2$\sqrt{3}$.

点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$,g(x)=1-x$+\frac{{x}^{2}}{2}$$-\frac{{x}^{3}}{3}$,设函数F(x)=f(x)•g(x),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等比数列{an}中,2a4-3a3+a2=0,且a1=64,公比q≠1,
(1)求an
(2)设bn=log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数$f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示,求:
(1)f(x)的表达式.
(2)f(x)的单调增区间.
(3)f(x)的最小值以及取得最小值时的x集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给出以下结论:
①互斥事件一定对立.
②对立事件一定互斥.
③互斥事件不一定对立.
④事件A与B互斥,则有P(A)=1-P(B).
其中正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b∈(-∞,0),则$a+\frac{1}{b},b+\frac{1}{a}$(  )
A.都不大于-2B.都不小于-2
C.至少有一个不大于-2D.至少有一个不小于-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在三角形ABC中,角A,B,C所对的边为a,b,c,a=7,c=3,且$\frac{sinC}{sinB}=\frac{3}{5}$.
(Ⅰ)求b;       
(Ⅱ)求∠A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC的内角A、B、C的对边分别为a,b,c.若a=2,$c=2\sqrt{2}$,$cosA=\frac{{\sqrt{3}}}{2}$,且b<c,则b=(  )
A.$\sqrt{3}$B.$\sqrt{6}$-$\sqrt{2}$C.$2\sqrt{2}$D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等差数列{an}的前n项和为Sn,若3,a7,a5也成等差数列,则S1751.

查看答案和解析>>

同步练习册答案