精英家教网 > 高中数学 > 题目详情
17.执行如图所示的程序框图,若输出的k值为8,则判断框图可填入的条件是(  )
A.$s≤\frac{3}{2}$B.$s≤\frac{7}{4}$C.$s≤\frac{23}{12}$D.$s≤\frac{49}{24}$

分析 模拟执行程序框图,依次写出每次循环得到的k,S的值,当S≥$\frac{49}{24}$时,退出循环,输出k的值为8,故判断框图可填入的条件是S≤$\frac{23}{12}$.

解答 解:模拟执行程序框图,k的值依次为0,2,4,6,8,
因此S=1+$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}$=$\frac{23}{12}$(此时k=6),
因此S=1+$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}$=$\frac{49}{24}$(此时k=8),即当S≥$\frac{49}{24}$时,退出循环,输出k的值为8,
因此判断框图可填入的进入循环的条件是:S≤$\frac{23}{12}$.
故选:C.

点评 本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知A(-1,2,1),B(1,3,4),则(  )
A.$\overrightarrow{AB}$=(-1,2,1)B.$\overrightarrow{AB}$=(1,3,4)C.$\overrightarrow{AB}$=(2,1,3)D.$\overrightarrow{AB}$=(-2,-1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且椭圆C的离心率e=$\frac{\sqrt{2}}{2}$,长轴长为2$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)直线l:x=my-3交椭圆C于P、Q两点,求△PQF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将参加夏令营的编号为1,2,3,…,52的52名学生,采用系统抽样的方法抽取一个容量为4的样本,已知6号,32号,45号学生在样本中,则样本中还有一名学生的编号是19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的点P到左、右两焦点F1,F2的距离之和为2$\sqrt{2}$,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在同时满足①②两个条件的直线l?
①过点M(0,$\frac{1}{3}$);
②存在椭圆上与右焦点F2共线的两点A、B,且A、B关于直线l对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在多面体EF-ABCD中,四边形ABCD,ABEF均为直角梯形,∠ABE=∠ABC=$\frac{π}{2}$,四边形DCEF为平行四边形,平面DCEF⊥平面ABCD.
(Ⅰ)求证:DF⊥平面ABCD;
(Ⅱ)若BC=CD=CE=$\frac{1}{2}$AB,求直线BF与平面ADF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,ABCD是梯形,AB∥CD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E为PD的中点.
(1)求作:AE∥平面PBC;
(2)求面PAD与面PBC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=Asin(ωx+ϕ)(A,ω,ϕ是常数,且A>0,ω>0)的部分图象如图所示,下列结论:
①最小正周期为π;
②将f(x)的图象向左平移$\frac{π}{6}$个单位,所得到的函数是偶函数;
③f(0)=1;
④$f(\frac{12π}{11})<f(\frac{14π}{13})$;
⑤$f(x)=-f(\frac{5π}{3}-x)$,其中正确的是①④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=1,CC1=2,BC1=$\sqrt{3}$.
(1)求证:BC1⊥平面ABC;
(2)当二面角A-CC1-B为$\frac{π}{3}$时,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

同步练习册答案