精英家教网 > 高中数学 > 题目详情

(本小题满分12分)  
,  
(1)当时,求曲线处的切线方程;
(2)如果存在,使得成立,求满足上述条件的最大整数
(3)如果对任意的,都有成立,求实数的取值范围.


(1)
(2)4
(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,, 其中是不等于零的常数,
(1)、(理)写出的定义域(2分);
(文)时,直接写出的值域(4分)
(2)、(文、理)求的单调递增区间(理5分,文8分);
(3)、已知函数,定义:.其中,表示函数上的最小值,
表示函数上的最大值.例如:,则 ,   ,
(理)当时,设,不等式
恒成立,求的取值范围(11分);
(文)当时,恒成立,求的取值范围(8分);

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数.
(1)求证:不论为何实数总是为增函数;
(2)确定的值, 使为奇函数;
(3)当为奇函数时, 求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)判断函数的单调性,并简要说明理由,不需要用定义证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)求函数的定义域:
(1)  
(2)      

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文)已知函数(b、c为常数).
(1)若处取得极值,试求的值;
(2)若上单调递增,且在上单调递减,又满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数.
(Ⅰ)令,求关于的函数关系式,并写出的范围;
(Ⅱ)求该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数的定义域恰是能使关于x的不等式对于实数恒成立的充要条件,求的定义域及值域。(12分)

查看答案和解析>>

同步练习册答案