精英家教网 > 高中数学 > 题目详情
5.直角△ABC中,∠C=90°,D在BC上,CD=2DB,tan∠BAD=$\frac{1}{5}$,则sin∠BAC=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{13}}{13}$D.$\frac{\sqrt{2}}{2}$或$\frac{3\sqrt{13}}{13}$

分析 设DE=k,BD=x,CD=2x,BC=3x,先在Rt△ADE中,由tan∠BAD=$\frac{1}{5}$,得出AE=5k,AD=$\sqrt{26}$k,在Rt△BDE中,由勾股定理求出BE,于是AB=AE+BE=5k+$\sqrt{{x}^{2}-{k}^{2}}$,然后根据AC的长度不变得出AD2-CD2=AB2-BC2,即26k2-4x2=(5k+$\sqrt{{x}^{2}-{k}^{2}}$)2-9x2,解方程求出x=$\sqrt{2}$k,或x=$\frac{\sqrt{13}}{2}$k,然后在Rt△ABC中利用正弦函数的定义即可求解.

解答 解:设DE=k,BD=x,CD=2x,BC=3x.
∵在Rt△ADE中,∠AED=90°,tan∠BAD=$\frac{1}{5}$=$\frac{DE}{AE}$,
∴AE=5DE=5k,
∴AD=$\sqrt{A{E}^{2}+E{D}^{2}}$=$\sqrt{26}$k.
∵在Rt△BDE中,∠BED=90°,
∴BE=$\sqrt{B{D}^{2}-D{E}^{2}}$=$\sqrt{{x}^{2}-{k}^{2}}$,
∴AB=AE+BE=5k+$\sqrt{{x}^{2}-{k}^{2}}$.
∵∠C=90°,
∴AD2-CD2=AB2-BC2
即26k2-4x2=(5k+$\sqrt{{x}^{2}-{k}^{2}}$)2-9x2
解得k2=$\frac{1}{2}$x2,或$\frac{4}{13}$x2
即x=$\sqrt{2}$k,或x=$\frac{\sqrt{13}}{2}$k,
经检验,x=$\sqrt{2}$k,或x=$\frac{\sqrt{13}}{2}$k是原方程的解,
∴BC=3$\sqrt{2}$k,或$\frac{3\sqrt{13}}{2}$k,
AB=AE+BE=5k+$\sqrt{{x}^{2}-{k}^{2}}$=6k,或$\frac{13k}{2}$,
∴sin∠BAC=$\frac{BC}{AB}$=$\frac{\sqrt{2}}{2}$,或$\frac{3\sqrt{13}}{13}$.

点评 本题考查了解直角三角形,勾股定理,锐角三角函数的定义,设DE=k,BD=CD=x,利用勾股定理列出方程26k2-4x2=(5k+$\sqrt{{x}^{2}-{k}^{2}}$)2-9x2是解题的关键,本题也考查了解无理方程的能力,考查了转化思想和数形结合思想,计算量较大,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知双曲线x2-$\frac{y^2}{m^2}$=1的虚轴长是实轴长的2倍,则实数m的值是(  )
A.±1B.±2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设p:不等式x2+(m-1)x+1>0的解集为R;q:?x∈(0,+∞),m≤x+$\frac{1}{x}$恒成立.若“p且q”为假命题,“p或q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知p:“?x∈[1,2],x2-a≥0”,q:“?x0∈R,使x02+2ax0+2-a=0”.若命题“p且q”是真命题,则实数a的取值范围是a≤-1,或a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex(x2-a),a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若函数f(x)在(-3,0)上单调递减,试求a的取值范围;
(Ⅲ)若函数f(x)的最小值为-2e,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若x>1,x+$\frac{9}{x}$-2取到的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{x+1,x<0}\end{array}\right.$,则f(1)等于(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.1,a,b,c,4构成等比数列,则a+b+c=(  )
A.$2-3\sqrt{2}$B.$2+3\sqrt{2}$C.$2±3\sqrt{2}$D.$±(2-3\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:函数f(x)=x2+ax-2在[-2,2]内有且仅有一个零点.命题q:x2+ax+2≤0在区间[1,2]内有解.若命题“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案