精英家教网 > 高中数学 > 题目详情
8.如图,棱长为1的正四面体在平面α上方,且棱AB?平面α,则正四面体上的所有点在平面α内的射影构成图形面积的取值范围是(  )
A.[$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{3}}{4}$]B.[$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{3}}{4}$]C.[$\frac{\sqrt{3}}{4}$,$\frac{1}{2}$]D.[$\frac{\sqrt{6}}{6}$,$\frac{1}{2}$]

分析 根据题意,当线段AB相对的侧棱CD∥α时投影面面积最大,当正四面体的侧面ABC⊥α时,投影面面积最小,求出最大、最小值即可.

解答 解:由题意知,当线段AB相对的侧棱与投影面平行时投影面积最大,
此时投影是对角线为1的正方形,如图所示;
所以投影面积为$\frac{1}{2}$×1×1=$\frac{1}{2}$;
当正四面体的侧面ABC⊥α时,投影面面积最小,
此时投影面是一个三角形,其底面边长为线段AB,长度为1,
三角形的高是点D到平面ABC的距离,为$\sqrt{{1}^{2}{-(\frac{\sqrt{3}}{2}×\frac{2}{3})}^{2}}$=$\frac{\sqrt{6}}{3}$,
如图所示;
所以,该投影三角形的面积是$\frac{1}{2}$×1×$\frac{\sqrt{6}}{3}$=$\frac{\sqrt{6}}{6}$;
综上,该四面体投影面的面积取值范围是[$\frac{\sqrt{6}}{6}$,$\frac{1}{2}$].
故选:D.

点评 本题考查了三视图的应用问题,考查了空间想象能力与计算能力的应用问题,是易错题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若直线过点M(1,2),N(4,2+$\sqrt{3}$),则此直线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线y2=2px(p>0)的焦点为F,点A,B在此抛物线上,且∠AFB=90°,弦AB的中点M在该抛物线准线上的射影为M′,则$\frac{|MM′|}{|AB|}$的最大值为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}(4-a)x,x<2\\{a^x},x≥2\end{array}\right.$在R上单调递增,则a的取值范围是(  )
A.(1,4]B.(2,4)C.[2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.通过计算高中生的性别与喜欢唱歌列联表中德数据,得到K2≈4.98,并且已知P(K2≥3.84)≈0.05,那么可以得到的结论是在犯错误率不超过0.05的情况下,认为高中生的性别与喜欢唱歌有关.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题中,正确的是②④(填写正确结论的序号)
①在△ABC中,点O为平面内一点,若O满足$\overrightarrow{OA}•\overrightarrow{OB}=\overrightarrow{OB}•\overrightarrow{OC}=\overrightarrow{OC}•\overrightarrow{OA}$,则点O为△ABC的外心;
②若锐角α,β满足cosα>sinβ,则α+β<$\frac{π}{2}$;
③函数$y=tan(2x-\frac{π}{3})+1$的对称中心为$(\frac{kπ}{4}+\frac{π}{6},0),(k∈Z)$;
④在△ABC中,若sin(A-B)=1+2cos(B+C)sin(A+C),则△ABC的形状一定是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知AB∥EF,AC∥EG,∠BAC=60°,则∠FEG=60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}前n项和Sn=5n-1,则a12+a22+a32+…+an2等于(  )
A.(5n-1)2B.52n-1C.$\frac{2}{3}$(52n+1+1)D.$\frac{2}{3}$(52n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)证明:过圆x2+y2=r2上一点Q(x0,x0)的切线方程为x0x+y0y=r2
(Ⅱ)已知椭圆C方程为$\frac{x^2}{16}+\frac{y^2}{4}$=1,从椭圆C上一点P向圆x2+y2=1上引两条切线,切点为A,B.当直线AB分别与y轴、x轴交于M,N两点时,求|MN|的最小值.

查看答案和解析>>

同步练习册答案