精英家教网 > 高中数学 > 题目详情
20.已知数列{an}满足a1=$\frac{1}{2}$,an+1=an+$\frac{1}{{n}^{2}+n}$,求数列{an}的通项公式.

分析 由an+1=an+$\frac{1}{{n}^{2}+n}$,得到an+1-an=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,由此利用an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1,能求出数列{an}的通项公式.

解答 解:∵an+1=an+$\frac{1}{{n}^{2}+n}$,
∴an+1-an=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1
=($\frac{1}{n-1}$-$\frac{1}{n}$)+($\frac{1}{n-2}$-$\frac{1}{n-1}$)+…+($\frac{1}{2}$-$\frac{1}{3}$)+(1-$\frac{1}{2}$)+$\frac{1}{2}$
=1-$\frac{1}{n}$+$\frac{1}{2}$
=$\frac{3}{2}$-$\frac{1}{n}$,
当n=1时,a1=$\frac{3}{2}$-1=$\frac{1}{2}$成立,
故an=$\frac{3}{2}$-$\frac{1}{n}$.

点评 本题考查数列的通项公式的求法,解题时要认真审题,注意累加法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个互相垂直的单位向量,且$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.2$\sqrt{2}$B.$\sqrt{5}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为(  )
A.(x-2)2+y2=$\sqrt{10}$B.(x+2)2+y2=10C.(x+2)2+y2=$\sqrt{10}$D.(x-2)2+y2=10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.S=${C}_{27}^{1}$+${C}_{27}^{2}$+…+${C}_{27}^{27}$除以9的余数是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知函数f(x)=$\frac{1}{2}$x2-x-$\frac{5}{2}$,0≤x≤t+1,求f(x)的最大值(其中t>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=4sinθ,θ∈[0,$\frac{π}{2}$],先把半圆C的极坐标方程化为直角坐标方程,再化为参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.化简$\frac{1+sin8θ-cos8θ}{1+sin8θ+cos8θ}$等于(  )
A.tan2θB.cot4θC.tan4θD.cot2θ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若角α的终边是一次函数y=2x(x≥0)所表示的曲线,求sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{AB}$=(2,4),$\overrightarrow{BC}$=(1,-2),$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{AC}$,求点C的坐标.

查看答案和解析>>

同步练习册答案