精英家教网 > 高中数学 > 题目详情
3.下列各式正确的是(x>0,y>0,z>0,a>0且a≠1)(  )
①${log_a}(x{y^2})=2{log_a}x•{log_a}y$;      
②${log_a}(x\sqrt{y})={log_a}x+2{log_a}y$;
③${log_a}\frac{xy}{z^3}={log_a}x+{log_a}y+\frac{1}{3}{log_a}z$;  
④${log_a}\frac{{\sqrt{xy}}}{z}=\frac{1}{2}{log_a}x+\frac{1}{2}{log_a}y+{log_a}z$.
A.①②B.①④C.③④D.都不正确

分析 利用对数的运算性质即可判断出正误.

解答 解:利用对数的运算性质可得:①$lo{g}_{a}(x{y}^{2})$=logax+2logay,因此①不正确;
②$lo{g}_{a}(x\sqrt{y})$=logax+$\frac{1}{2}$logay,因此②不正确;
③$lo{g}_{a}\frac{xy}{{z}^{3}}$=logax+logay-3logaz,因此③不正确;
④$lo{g}_{a}\frac{\sqrt{xy}}{z}$=$\frac{1}{2}$logax+$\frac{1}{2}$logay-logaz,因此④不正确.
综上:都不正确.
故选:D.

点评 本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax2+(2a+1)x-1是偶函数,则实数a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=asinx-$\frac{3}{2}$(a∈R),若函数f(x)在(0,π)的零点个数为2个,则当x∈[0,$\frac{π}{2}$],f(x)的最大值为a-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△OBC中,点A是线段BC的中点,点D是线段OB的一个靠近B的三等分点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AO}$=$\overrightarrow{b}$.
(1)用向量$\overrightarrow{a}$与$\overrightarrow{b}$表示向量$\overrightarrow{OC},\overrightarrow{CD}$;
(2)若$\overrightarrow{OE}=\frac{3}{5}\overrightarrow{OA}$,判断C、D、E是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.集合A={x|x≤3},B={x|x>1},R为实数集.
(1)求A∩B;       
(2)求A∪(∁RB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=\sqrt{3+ax}$在区间(-2,4)内单调递减,则实数a的取值范围是(  )
A.a<0B.$-\frac{3}{4}<a<0$C.$-\frac{3}{2}≤a<0$D.$-\frac{3}{4}≤a<0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=f(x)在点(2,1)处的切线与直线3x-y-2=0平行,则f′(2)等于(  )
A.1B.-1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,且满足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求a2017的值;
(2)求数列{an}的通项公式;
(3)若数列{bn}满足b1=1,bn=$\frac{1}{{{a_n}\sqrt{{a_{n-1}}}+{a_{n-1}}\sqrt{a_n}}}$(n≥2,n∈N*),求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\sqrt{x+1}$+$\frac{{{{(1-x)}^0}}}{2-x}$的定义域为[-1,1)∪(1,2)∪(2,+∞)(用集合或区间表示).

查看答案和解析>>

同步练习册答案