精英家教网 > 高中数学 > 题目详情

【题目】如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM,E为BD的中点.
(1)求证:BM⊥平面ADM;
(2)求直线AE与平面ADM所成角的正弦值.

【答案】
(1)解:△ABM中,AB=2, ,∴AM⊥BM,

又平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,且BM平面ABCM,

∴BM⊥平面ADM


(2)解:如图,以M点为坐标原点,MA所在直线为x轴,MB所在直线为y轴建立空间直角坐标系,

则M(0,0,0),

∵E为BD中点,∴

由(1)知, 为平面ADM的一个法向量,

∴直线AE与平面ADM所成角的正弦值为


【解析】(1)根据线面垂直的判定定理证明即可;(2)求出平面ADM的一个法向量,求出 的余弦值,从而求出直线AE与平面ADM所成角的正弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】12分)

如图,四棱锥P-ABCD中,侧面PAD为等比三角形且垂直于底面ABCD EPD的中点.

1)证明:直线 平面PAB

2)点M在棱PC 上,且直线BM与底面ABCD所成锐角为 ,求二面角M-AB-D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中a为非零实数),且方程 有且仅有一个实数根. (Ⅰ)求实数a的值;
(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:

有明显拖延症

无明显拖延症

合计

35

25

60

30

10

40

合计

65

35

100

(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;

(Ⅱ)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

1)求椭圆的方程和其准圆方程;

2)点是椭圆准圆上的动点,过点作椭圆的切线准圆于点.

当点准圆轴正半轴的交点时,求直线的方程并证明

求证:线段的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 万作为技改费用,投入(50+2x)万元作为宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an} 中,已知公差 ,且a1+a3+a5+…+a99=60,则a1+a2+a3+…+a100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内给定三个向量 =(3,2), =(﹣1,2), =(4,1).回答下列问题:
(1)若( +k )∥(2 ),求实数k;
(2)设 =(x,y)满足( )∥( + )且| |=1,求

查看答案和解析>>

同步练习册答案