精英家教网 > 高中数学 > 题目详情
定义域为D的函数f(x),其导函数为f′(x),若对?x∈D,均有f(x)<f′(x),则称函数f(x)为D上的梦想函数.
(1)已知函数f(x)=sinx+cosx,试判断f(x)是否为其定义域上的梦想函数,并说明理由;
(2)若函数g(x)=ax+a-1(a∈R,x∈(0,π))为其定义域上的梦想函数,求a的取值范围.
考点:导数的运算,利用导数研究函数的单调性
专题:导数的概念及应用
分析:(Ⅰ)按照梦想函数的定义举反例即可;
(Ⅱ)求出g′(x)=a,由g(x)为(0,π)上为梦想函数,得ax+a-1<a在x∈(0,π)上恒成立,分离出参数a后转化为函数最值解决;
解答: 解:(Ⅰ)函数f(x)=sinx+cosx不是其定义域上的梦想函数.
理由如下:f(x)=sinx+cosx定义域D=R,f'(x)=cosx-sinx,
存在x=
π
4
,使,f(
π
4
)>
故函数h(x)=sinx+cosx不是其定义域D=R上的梦想函数.
(Ⅱ)g(x)=ax+a-1,g'(x)=a,
若函数g(x)=ax+a-1在x∈(0,π)上为梦想函数,
则ax+a-1<a在x∈(0,π)上恒成立,即a<
1
x
在x∈(0,π)上恒成立,
因为在y=
1
x
在x∈(0,π)内的值域为(
1
π
,+∞)
所以a≤
1
π
点评:本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

各项都是正数的等比数列{an}的公比q≠1,且a2
1
2
a3,a1成等差数列,则
a2+a 3+a4
a3+a4+a5
的值为(  )
A、
1-
5
2
B、
5
+1
2
C、
5
-1
2
D、
5
+1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=tan(13x+14π)是(  )
A、周期为
13
的偶函数
B、周期为
13
的奇函数
C、周期为
π
13
的偶函数
D、周期为
π
13
的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
1
2
,且an+1=
1
2
an(n为偶数)
an+
1
4
(n为奇数)
,记bn=a2n-1-
1
4
(n∈N*)bn=a2n-1-
1
4
(n∈N*).
(1)求a2,a3
(2)证明:{bn}是等比数列;
(3)求数列{
3n+1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=1+i(i是虚数单位)
(1)若ω=z2+3
.
z
-1,求|ω|
(2)若
z2+az+b
z2-z+1
=1-i(a,b∈R),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知倾斜角为
π
4
的直线f经过点P(1,1).
(I)写出直线l的参数方程;
(Ⅱ)设直线l与x2+y2=4相交于A,B两点,求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-4x-12<0},B={x|b-3<x<b+7},M={x|-4≤x<5},全集U=R.
(1)求A∩M; 
(2)若B∪(∁uM)=R,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求证:BC⊥平面PBD;
(2)设Q为侧棱PC的中点,求三棱锥Q-PBD的体积;
(3)若N是棱BC的中点,则棱PC上是否存在点M,使MN平行于平面PDA?若存在,求PM的长;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
ax
x+1

(1)若函数f(x)有极值,求实数a的取值范围;
(2)当f(x)有两个极值点(记为x1和x2)时,求证f(x1)+f(x2)≥
x+1
x
•[f(x)-x+1].

查看答案和解析>>

同步练习册答案