精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求证:BC⊥平面PBD;
(2)设Q为侧棱PC的中点,求三棱锥Q-PBD的体积;
(3)若N是棱BC的中点,则棱PC上是否存在点M,使MN平行于平面PDA?若存在,求PM的长;若不存在请说明理由.
考点:棱柱、棱锥、棱台的体积,直线与平面垂直的判定,直线与平面垂直的性质
专题:空间位置关系与距离
分析:(1)取CD中点E,连结BE,则BE⊥CD,且BE=1,由勾股定理得BC⊥BD,由此能证明BC⊥面PBD.
(2)Q为侧棱PC的中点,取BC中点N,连结QN,由已知条件得三棱锥Q-PBD的高BN=
1
2
BC=
2
2
,由此能求出三棱锥Q-PBD的体积.
(3)存在,M是PC的四等分点,靠近C点,理由如下:取PC的中点Q,由BQ平行MN,推导出MN平行与平面PDA.
解答: (本小题满分12分)
(1)证明:∵面PCD⊥底面ABCD,
面PCD∩底面ABCD=CD,PD?面PCD,且PD⊥CD,
∴PD⊥面ABCD,又BC?面ABCD,∴BC⊥PD,①
取CD中点E,连结BE,则BE⊥CD,且BE=1,
在Rt△ABD中,BD=
2
,在Rt△BCE中,BC=
2

∵BD2+BC2=(
2
2+(
2
2=22=CD2,∴BC⊥BD,②
∵PD∩BD=D
∴BC⊥面PBD.…(4分)
(2)解:∵Q为侧棱PC的中点,取BC中点N,连结QN,
则QN∥PB,BC⊥面PBD,
∴三棱锥Q-PBD的高BN=
1
2
BC=
2
2

∵PD⊥CD,AB=AD=PD=1,CD=2,
S△PBD=
1
2
PD•BD=
1
2
×1×
1+1
=
2
2

∴三棱锥Q-PBD的体积V=
1
3
×BN×S△PBD
=
1
3
×
2
2
×
2
2
=
1
6
.…(8分)
(3)解:存在,M是PC的四等分点,靠近C点,理由如下:
取PC的中点Q,由题意知BQ平行于平面PDA,
又BQ平行MN,所以MN平行与平面PDA.…(13分)
点评:本题直线与平面平行的证明,考查三棱锥体积的求法,考查直线与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=xsinx+cosx的导函数是y=f′(x),则f′(
π
2
)=(  )
A、-2B、2C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为D的函数f(x),其导函数为f′(x),若对?x∈D,均有f(x)<f′(x),则称函数f(x)为D上的梦想函数.
(1)已知函数f(x)=sinx+cosx,试判断f(x)是否为其定义域上的梦想函数,并说明理由;
(2)若函数g(x)=ax+a-1(a∈R,x∈(0,π))为其定义域上的梦想函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,3),B(2,1),C(5,t),O为坐标原点.
(1)若BC⊥AB,求t值.
(2)若
OB
AC
,求t值及此时△ABC中角B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司有职工160人,其中业务人员有120人,管理人员16人,后勤人员24人,为了了解职工的某种情况,采用分层抽样的方法抽取一个容量为20的样本,则需要抽取管理人员多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-4<x<2},B={x|x<-5或x>1},C={x|m-1<x<m+1},m∈R.
(1)求A∩B;
(2)若A∩B⊆C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
3
x3-
1
2
(a+1)x2+x-
1
3
,a∈R,
(1)若a<0,求函数f(x)极值;
(2)是否存在实数a使得函数f(x)在区间[0,2]上有两个零点?若存在,求出a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某食品企业一个月内别消费者投诉的次数用ξ表示,据统计,随机变量ξ的概率分布如下:
ξ0123
p0.10.32aa
(1)求a的值;
(2)求ξ的数学期望和方差;
(3)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,Rt△BMC中,斜边BM=5,它在平面ABC上的射影AB长为4,∠MBC=60°,
求:(1)BC⊥平面MAC;
(2)MC与平面CAB所成角的正弦值.

查看答案和解析>>

同步练习册答案