精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a
3
x3-
1
2
(a+1)x2+x-
1
3
,a∈R,
(1)若a<0,求函数f(x)极值;
(2)是否存在实数a使得函数f(x)在区间[0,2]上有两个零点?若存在,求出a的范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)先求导,通过导数的正负求函数的极值;(2)通过导数的正负判断出函数的单调性,结合根的存在性定理求解.
解答: 解:(1)f′(x)=ax2-(a+1)x+1=a(x-1)(x-
1
a

∵a<0,∴
1
a
<1,
(-∞,
1
a
1
a
1
a
,1)
1(1,+∞)
f′(x)-0+0-
f(x)递减极小值递增极大值递减
∴f(x)极小值=f(
1
a
)=
-2a2+3a-1
6a2
,f(x)极大值=f(1)=-
1
6
(a-1)
(2)f(
1
a
)=
-2a2+3a-1
6a2
=-
(a-1)(2a-1)
6a2
,f(1)=-
1
6
(a-1)
f(2)=
1
3
(2a-1),f(0)=-
1
3
<0,
①当a≤
1
2
时,f(x)在[0,1]上为增函数,在[1,2]上为减函数,f(0)<0,f(1)=-
1
6
(a-1)>0,f(2)=
1
3
(2a-1)≤0,
所以f(x)在区间[0,1],(1,2]上各有一个零点,即在[0,2]上有两个零点;
②当
1
2
<a≤1时,f(x)在[0,1]上为增函数,在[1,
1
a
]上为减函数,[
1
a
,2]上为增函数,
f(0)<0,f(1)=-
1
6
(a-1)>0,f(
1
a
)=-
(a-1)(2a-1)
6a2
>0,f(2)=
1
3
(2a-1)>0,
所以f(x)只在区间[0,1]上有一个零点,故在[0,2]上只有一个零点;
③当a>1时,f(x)在[0,
1
a
]上为增函数,在[
1
a
,1]上为减函数,[1,2]上为增函数,
f(0)<0,f(
1
a
)=-
(a-1)(2a-1)
6a2
<0,f(1)<0,f(2)>0,
,所以f(x)只在区间(1,2)上有一个零点,故在[0,2]上只有一个零点;
综上所述,存在实数a,当a≤
1
2
时,函数f(x)在区间[0,2]上有两个零点.
点评:本题考查了导数的应用,包括单调性与极值的判断,同时考查了分类讨论的思想,综合性很强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=tan(13x+14π)是(  )
A、周期为
13
的偶函数
B、周期为
13
的奇函数
C、周期为
π
13
的偶函数
D、周期为
π
13
的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-4x-12<0},B={x|b-3<x<b+7},M={x|-4≤x<5},全集U=R.
(1)求A∩M; 
(2)若B∪(∁uM)=R,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求证:BC⊥平面PBD;
(2)设Q为侧棱PC的中点,求三棱锥Q-PBD的体积;
(3)若N是棱BC的中点,则棱PC上是否存在点M,使MN平行于平面PDA?若存在,求PM的长;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[
1
e
,e]上的最大值;
(3)已知函数g(x)=x3+3m2x+2m-
3
2
(m为实数),若对任意x1∈[
1
e
,e],x2∈[0,1],总有f(x1)<g(x2)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(x+
2
3
π)+2cos2
x
2
,x∈R.
(Ⅰ)若x∈[-
π
2
,0],求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a、b、c,若f(B)=1,b=1,c=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某校高二年级共有1200名学生,现从参加高二年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)估计这次期末考试的及格人数(60分及以上为及格).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
ax
x+1

(1)若函数f(x)有极值,求实数a的取值范围;
(2)当f(x)有两个极值点(记为x1和x2)时,求证f(x1)+f(x2)≥
x+1
x
•[f(x)-x+1].

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}为等差数列,则下列数列中:
(1){pan};  (2){nan}; (3){an2}; (4){an+an+1}.
(其中p,q为常数)等差数列有
 

查看答案和解析>>

同步练习册答案